2

Answer all the questions.

1 Calculate

$$
\sqrt[3]{\frac{210}{10^{2}-5^{2}}}
$$

Give your answer correct to 3 significant figures.
$3 \sqrt{1.68}=1.18878 \rightarrow$

$$
1.19
$$

2 The ratio 50 grams to 1 kilogram can be written in the form $1: n$.
Find the value of n.

$$
n=\ldots \ldots \ldots
$$

3 (a) Anne, Barry and Colin share a prize in the ratio $3: 4: 5$.
Colin gives $\frac{1}{3}$ of his share to a charity.
What fraction of the whole prize does Colin give to the charity?

$$
\frac{5}{3+4+5} \times \frac{1}{3}=\frac{5}{12} \times \frac{1}{3}=
$$

(a)
(b) Delia, Edwin and Freya share some money in the ratio $5: 7: 8$.

Freya's share is $£ 1600$.
How much money did they share?

$$
5+7+8=20 . \quad \frac{20}{8} \times 1600
$$

(b) $£ \ldots \ldots \ldots .$.

4 A bus timetable shows the following information.

- A bus following route T leaves for the train station every 20 minutes.
- A bus following route A leaves for the airport every 18 minutes.
- A bus following route T and a bus following route A both leave at 8.37 am .
(a) When is the next time one of each bus is timetabled to leave at the same time?

$$
\begin{aligned}
& \text { LCM of } 20 \text { and } 18=180 . \\
& 180 \mathrm{~min}=3 \mathrm{hr} . \quad 8.37 \mathrm{am}+3 \mathrm{hr}=
\end{aligned}
$$

$11: 37 \mathrm{am}$
\qquad
(b) Write down one assumption that was necessary to solve this problem.
...Buses......neep...to.......tine table..........................delays.........

5 Bennie is 7 years older than Ayesha.
Chloe is twice as old as Bennie.
The sum of their three ages is 57 .
Work out the ages of Ayesha, Bennie and Chloe.

$$
\begin{gathered}
b=7+a \Rightarrow a=b-7 \\
c=2 b \\
a+b+c=57 \\
b-7+b+2 b=57 \\
\Rightarrow 4 b=64 . \\
\Rightarrow b=16 \Rightarrow a=9, c=32
\end{gathered}
$$

Ayesha's age is
Bennie's age is
Chloe's age is [6]
Turn over

6120 students in Year 10 and Year 11 sit a test.

- 61 of the students are in Year 10.
- 83 of the students are right-handed.
- 20 of the students in Year 11 are left-handed.

One of the students in Year 10 and one of the students in Year 11 are chosen at random.
Which one is more likely to be left-handed?
Show your working. You may use the table if you wish.

	Lett	Right	
Y10	17	44	61
$y 11$	20	39	59
	37	83	120

$$
y_{10}=\frac{17}{61} \quad y_{11}=\frac{20}{59}
$$

$$
\frac{20}{59}>\frac{17}{61}
$$

so the Year 11 student is more likely to be left handed.

7 The diagram shows a shape $A B C D E$.
The shape is made from a rectangle, a right-angled triangle and a quarter of a circle.

Not to scale
$A E=18 \mathrm{~m}$ and the perpendicular distance from C to $A E$ is 41 m .
Work out the perimeter of the shape $A B C D E$.

$$
\begin{aligned}
& \text { Radius of } B C F=9 \mathrm{~m} \Rightarrow \text { arc } B C \text { is } \frac{\pi}{2} \times 9=\frac{9 \pi}{2} \\
& A B=D E=41-9=32 \mathrm{~m} . \\
& A E=18 \mathrm{~m} . \\
& C D^{2}=9^{2}+9^{2} \Rightarrow C D=\sqrt{162} \\
& \Rightarrow \text { Perimeter }=32+18+32+\sqrt{162}+\frac{9}{2} \pi \mathrm{~m} \\
& =108.865 \mathrm{~m}
\end{aligned}
$$

8 Triangle \mathbf{A} and triangle \mathbf{B} are drawn on the coordinate grid.

(a) Describe fully the single transformation that maps triangle \mathbf{A} onto triangle \mathbf{B}.
...Rotation 180° \qquad about the \qquad centre ($-1,0.1,0$).
\qquad
\qquad
(b) Describe fully the single transformation that is equivalent to:

- a reflection in the line $x=3$, followed by
- a translation by $\binom{4}{0}$.

You may use the grid above to help you.
\qquad Reflection in $x=5$

9 The diagram shows triangle $A B C$.
$C D$ is parallel to $A B$.
A, C and E lie in a straight line.
Angles of size a°, b° and c° are shown.

Not to scale

(a) Insert a°, b° or c° to make this statement true.

Give a reason for your answer.
Angle DCE = ...a.. because \qquad $i+$ corresponds \qquad toangle \qquad $\angle B A C$.
(b) Use the diagram and the answer to part (a) to show that the angles of a triangle add up to 180°.
Give a reason for each statement you make.
$\angle B C D=\angle A B C$, as these angles are alternate.

$a+b+c=180^{\circ}$.

10 Claudia invests $£ 25000$ at a rate of 2% per year compound interest.
Calculate the total amount of interest she will have earned after 5 years. Give your answer correct to the nearest penny.

$$
\begin{gathered}
25000 \times 1.02^{5}=27602.02 \\
27602.02-25000
\end{gathered}
$$

11 The area of a rectangle is $56 \mathrm{~m}^{2}$, correct to the nearest m^{2}. The length of the rectangle is 9.2 m , correct to the nearest 0.1 m .

Calculate the smallest possible width of the rectangle.

$$
\frac{55.5}{9.25}=6
$$

12 (a) Here are the first four terms of a sequence.

$$
\begin{array}{llll}
-1 & 4 & 9 & 14
\end{array}
$$

Write an expression for the nth term of this sequence.
(a)
........Sm..... 6
(b) The nth term of another sequence is given by

$$
a n^{2}+b n
$$

The third term is 9 and the sixth term is 126.
Find the value of a and the value of b.

$$
\begin{aligned}
& 9 a+3 b=9 \Rightarrow 18 a+6 b=18 \\
& 36 a+6 b=126 \\
& \Rightarrow 18 a=108 \\
& \Rightarrow a=6, b=-15
\end{aligned}
$$

(b) $a=$
\qquad

13 (a) The cumulative frequency graph shows the distribution of the heights of members of a rowing club.

(i) Find the median.
(a)(i)
172
cm [1]
(ii) Find the interquartile range

$$
170.5-160=
$$

(ii)
16.5
om [2]
(iii) Calculate the percentage of the members who are at least 180 cm tall.

(iii)
16.7
$\%[3]$
(b) The histogram summarises the heights of the 153 members of a swimming club.

Which club has the greater median height?
You must show all your working.
Median height in SC is the $77^{\text {th }}$ member.
28 in $140-160 \mathrm{~m}$ range $\Rightarrow 102$ under Moke
The median for the $S C$ is between $100 \mathrm{~cm} . \mathrm{mi} 10 \mathrm{~cm}$.
$\Rightarrow \frac{172}{R C}>S C$
Rowing club

12
14 The graph shows the speed of a train during the first 60 seconds of motion.

(a) What is the speed of the train after 9 seconds?
(a)
12 m / s [1]
(b) What does the straight line suggest about the speed of the train over the first 15 seconds?
\qquad
\qquad
(c) Work out the average speed of the train, in m / s, during the 60 seconds.

$$
\begin{aligned}
\text { Distance } & =\left(\frac{1}{2} \times 15 \times 20\right)+(35 \times 20)+\left(\frac{1}{2} \times 10 \times 20\right) \\
& =150+700+100 \\
& =950 \mathrm{~m} . \\
& \frac{950}{60}=
\end{aligned}
$$

(c)
......1.5. 8.3
m / s [5]

15 The diagram shows triangle $O A B$ and points C and D.

Not to scale
. D
$\overrightarrow{O A}=3 a$ and $\overrightarrow{O B}=3 b$.
C lies on $A B$ such that $A C=2 C B$.
D is such that $\overrightarrow{B D}=2 \mathbf{a}+\mathbf{b}$.
Show, using vectors, that OCD is a straight line.

$$
\begin{aligned}
& \overrightarrow{O C}=\overrightarrow{A C}+\overrightarrow{O A} \\
& \overrightarrow{A C}=\frac{2}{3} \overrightarrow{A B} \\
& \overrightarrow{A B}=3 \underline{b}-3 \underline{a} \\
& \Rightarrow \overrightarrow{A C}=2 \underline{b}-2 \underline{a} \\
& \overrightarrow{O C}=2 \underline{b}-2 \underline{a}+3 \underline{a}=2 \underline{b}+\underline{a}=\underline{a}+2 \underline{b} \\
& \overrightarrow{O D}=\overrightarrow{O B}+\overrightarrow{B D}=3 \underline{b}+2 \underline{a}+\underline{b}=2 \underline{a}+4 \underline{b} \\
& \overrightarrow{O D}=2 \overrightarrow{O C} \text { so } O C D \text { must be a straight line. }
\end{aligned}
$$

16 (a) The table shows values of x and y.

x	4	16	36
y	6	3	2

Show that these values fit the relationship that y is inversely proportional to \sqrt{x}.

$$
y=\frac{k}{\sqrt{x}} \quad \Rightarrow \quad k=y \sqrt{x} .
$$

$$
6 \times \sqrt{4}=12
$$

$$
3 \times \sqrt{16}=12
$$

The value of k is consistent

$$
2 \times \sqrt{36}=12
$$ for all pairs of x and y.

(b) a is inversely proportional to b^{2} and $a=3.75$ when $b=4$.

Find a formula linking a and b.

$$
\begin{aligned}
& a=\frac{k}{b^{2}} \\
& 3.75 \times 4 \times 4=k=60 .
\end{aligned}
$$

(b)

17 Show that $\left(a^{3}\right)^{-\frac{1}{3}} \times\left(a^{2}\right)^{\frac{1}{2}}=1$.

$$
\begin{aligned}
& \left(a^{3}\right)^{-\frac{1}{3}}=a^{-1} \\
& \left(a^{2}\right)^{1 / 2}=a^{\prime} . \\
& a^{-1} \times a^{\prime}=a^{0}=1 .
\end{aligned}
$$

18 Region \mathbf{R} satisfies these inequalities.

$$
\begin{aligned}
& y>3 \\
& y \geqslant x \\
& x+y \leqslant 9
\end{aligned}
$$

By drawing three straight lines on the grid, find and label the region \mathbf{R}.

Maths Made Easy

19 Solve this equation algebraically.
Give your solutions correct to 2 decimal places.

$$
x=\ldots, 3.19 \ldots \text { or } x=\ldots .5 .2 \ldots[4]
$$

END OF QUESTION PAPER

OCR
 Oxford Cambridge and lisA

Copyrioitit information

OCA is commilisd to broking permission to reproduce all thitd-party content that it uses in is assessment materials. OCR has attempted to identify and contact all copyright holders whose worth le used tit tiles paper la avoid the benue of disclosure of answet-iolated information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowisidementa Booklet, This is produced for enoch settee of examinations and is lreoly available to download from our public website (www.ocr,org.uk) after the live examination series.
 opportunity,
For quests of further information pleases content The OCR Copyright Team, Tho Triangle Building. Shaftesbury Road, Cambridge CB2 8EA.
 depiaflment of the Universally of Cambrian

