Answer ALL questions. Write your answers in the spaces provided. 1. Three bags, A, B and C, each contain 1 red marble and some green marbles. DO NOT WRITE IN THIS AREA Bag A contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 4 green marbles only Bag C contains 1 red marble and 2 green marbles only Sasha selects at random one marble from bag A. If he selects a red marble, he stops selecting. If the marble is green, he continues by selecting at random one marble from bag B. If he selects a red marble, he stops selecting. If the marble is green, he continues by selecting at random one marble from bag C. (a) Draw a tree diagram to represent this information. (2)(b) Find the probability that Sasha selects 3 green marbles. (2)(c) Find the probability that Sasha selects at least 1 marble of each colour. (2.)DO NOT WRITE IN THIS AREA (d) Given that Sasha selects a red marble, find the probability that he selects it from bag B. a G 4/5 R 9 G R 2 10 9/10 × 4/5 × 2/3 6) DO NOT WRITE IN THIS AREA $\frac{1}{3} + (\frac{9}{10} \times \frac{4}{5} \times \frac{1}{3})$ $\begin{pmatrix} \alpha \\ 10 \end{pmatrix} \times$ -9 /0 × 9/50 d) 3 $\frac{1}{10} + \left(\frac{9}{10} \times \frac{1}{5}\right) + \left(\frac{9}{10} \times \frac{4}{15} \times \frac{1}{3}\right)$ 13 25 2

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 2 continued a) 1QR = 26.6 - 19.4 = 7.21.5 × 1QR = 10.8 19.4 - 10.8 = 8.6 26-6 + 10-8 = 37-4. b) October, it is likely to have the coldest temperatures between May and October. c) $\sigma_x = \sqrt{\frac{4952.906}{184}} = 5.188 \approx 5.19 ^{\circ}C.$ d) $Z_{cat} = \pm 1.28$ lb 5-19× 1-2816×2 = 13-3°C. e) · Daily mean wind speed - this is qualitative. · Rainfall - distribution is not symmetric, there are plenty of days without rain. Turn over for a spare grid if you need to redraw your box plot. 7 I TERRET AR THE ARE THE TARK THE THE TERRET AR THE TARK

0

DO NOT WRITE IN THIS AREA

3. Barbara is investigating the relationship between average income (GDP per capita), x US dollars, and average annual carbon dioxide (CO₂) emissions, y tonnes, for different countries. She takes a random sample of 24 countries and finds the product moment correlation DO NOT WRITE IN THIS AREA coefficient between average annual CO_2 emissions and average income to be 0.446 (a) Stating your hypotheses clearly, test, at the 5% level of significance, whether or not the product moment correlation coefficient for all countries is greater than zero. (3) Barbara believes that a non-linear model would be a better fit to the data. She codes the data using the coding $m = \log_{10} x$ and $c = \log_{10} y$ and obtains the model c = -1.82 + 0.89mThe product moment correlation coefficient between c and m is found to be 0.882 (b) Explain how this value supports Barbara's belief. (c) Show that the relationship between y and x can be written in the form $y = ax^n$ where a and n are constants to be found. (5) DO NOT WRITE IN THIS AREA a) $H_0: p = 0$, $H_1: p \neq 0$. Pcit = 0.3438. 0.446 7 0.3438. There is evidence to suggest p > 0, So we reject Ho. There is a much stronger positive correlation. Ь) () logioy = -1.82 + 0.89 logiox. DO NOT WRITE IN THIS AREA $y = 10^{-1.82 + 0.891_{0}}$ ¢ $\Rightarrow y = 10^{-1.82} \times 10^{\log_{10} x^{0.89}}$ $=7y = 0.015 x^{0.89}$ 10

- DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
- 4. Magali is studying the mean total cloud cover, in oktas, for Leuchars in 1987 using data from the large data set. The daily mean total cloud cover for all 184 days from the large data set is summarised in the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	1	4	7	10	30	52	52	28

One of the 184 days is selected at random.

(a) Find the probability that it has a daily mean total cloud cover of 6 or greater.

Magali is investigating whether the daily mean total cloud cover can be modelled using a binomial distribution.

She uses the random variable X to denote the daily mean total cloud cover and believes that $X \sim B(8, 0.76)$

Using Magali's model,

(b) (i) find $P(X \ge 6)$

(ii) find, to 1 decimal place, the expected number of days in a sample of 184 days with a daily mean total cloud cover of 7

(c) Explain whether or not your answers to part (b) support the use of Magali's model.

There were 28 days that had a daily mean total cloud cover of 8 For these 28 days the daily mean total cloud cover for the **following** day is shown in the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	0	1	1	2	1	5	9	9

(d) Find the proportion of these days when the daily mean total cloud cover was 6 or greater.

(1)

(1)

(1)

(e) Comment on Magali's model in light of your answer to part (d).

(2)

a) 52	+ 52 + 28 =	132.
	132	
a anna an fairt i an an an an anna an an an an an an an a	184 .	
lan sana) internet san ang san di sa san ang san di sasa di san		
	i i i i i i i i i i i i i i i i i i i	
er og som her og som		n wegen werden werden in weiten eine der eine werden wegen eine eine eine eine eine eine eine

Question 4 continued b);) $\times \sim B(8, 0.76)$. P(x=6) + P(x=7) + P(x=8). $= \left[\begin{pmatrix} 8 \\ 6 \end{pmatrix} 0.76^{6} \times 0.24^{2} + \begin{pmatrix} 9 \\ 7 \end{pmatrix} 0.76^{7} \times 0.24 + 0.76^{8} \right]$ - 0,703. ii) 184 x P(x=7) = 184 ((3) × 0.76 × 0.24) = 51.7 DO NOT WRITE IN THIS AREA c) The probabilities found match those in the original data set. Magali's model is supported. d) 5+9+9=23. 1+1+2+1+5+9+9=28. 23 e) The proportion of days with CC > 6 increases. DO NOT WRITE IN THIS AREA Independence does not hold, i.e. the in value is they to have high CC if previous day had high CC. Magali's model may not be suitable. 15

DO NOT WRITE IN THIS AREA

Turn over 🕨

5.	A machine puts liquid into bottles of perfume. The amount of liquid put into each bottle, Dml , follows a normal distribution with mean $25 ml$	
	Given that 15% of bottles contain less than 24.62 ml	
	(a) find to 2 desimple places of a start and a start a	
	(a) find, to 2 decimal places, the value of k such that $P(24.63 < D < k) = 0.45$	
	A random sample of 200 bottles is taken.	
	(b) Using a normal approximation, find the probability that fewer than half of these bottles contain between 24.63 ml and <i>k</i> ml	
		(3)
	The machine is adjusted so that the standard deviation of the liquid put in the bottles is now 0.16 ml	
	Following the adjustments, Hannah believes that the mean amount of liquid put in each bottle is less than 25 ml	
	She takes a random sample of 20 bottles and finds the mean amount of liquid to be 24.94 ml	
	 (c) Test Hannah's belief at the 5% level of significance. You should state your hypotheses clearly. 	
		(5)
100 × 100	a) $Z_{crit}(157.) = -1.0364.$	
grad y analysis		
	24.63 - 25 = - 1.0364	
	6	
	⇒ 5 = 0.357.	
	P(24.63 > D) = 0.15	
an anna an an	$P(24.63 \le D \le k) = 0.45 = P(k70) - P(24.63) = P(k70) - 0.15.$	>0)
	$\Rightarrow P(17D) = 0.6 \Rightarrow Z_{sot} = 0.2$	533
to prove the	k - 25 = 0 - 2533	
- B- 4		
	⇒ k= 25.09.	
ha-ripter taur		nterneget the constant as more responsible and the

Question 5 continued b) Y~B(200, 0.45) $\Rightarrow W \sim N(90, 49.5)$ $P(\gamma < 100) \approx P(w < 99.5)$ $= \mathbb{P}(Z \leftarrow \frac{99.5 - 90}{\sqrt{49.5}}) = 0.9115$ C) Ho: M=25, Hi: MK25 → Zerit= -1.6449. $\overline{D} \sim N(25, \frac{0.16^2}{20})$ $P(\bar{D} < 24.94) = P(z < \frac{24.94 - 25}{0.16}) = P(z < -1.6771)$ => -1.6771 < -1.6449 The test statistic is in the critical region, we must reject to, and we SCI Per have sufficient endence to support Hannah's dam. 19

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA