Answer all questions in the spaces provided.

1 Given that $a>0$, determine which of these expressions is not equivalent to the others.

Circle your answer.
[1 mark]

$$
-2 \log _{10}\left(\frac{1}{a}\right) \quad 2 \log _{10}(a) \quad \log _{10}\left(a^{2}\right) \quad-4 \log _{10}(\sqrt{a})
$$

2 Given $y=\mathrm{e}^{k x}$, where k is a constant, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Circle your answer.
[1 mark]

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{k x} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=k \mathrm{e}^{k x} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=k x \mathrm{e}^{k x-1} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{k x}}{k}
$$

3 The diagram below shows a sector of a circle.

The radius of the circle is 4 cm and $\theta=0.8$ radians.
Find the area of the sector.
Circle your answer.
$1.28 \mathrm{~cm}^{2}$
$3.2 \mathrm{~cm}^{2}$
$6.4 \mathrm{~cm}^{2}$
$12.8 \mathrm{~cm}^{2}$

4 The point A has coordinates $(-1, a)$ and the point B has coordinates $(3, b)$
The line $A B$ has equation $5 x+4 y=17$
Find the equation of the perpendicular bisector of the points A and B.

Midpoint: $x=1$.

$$
4 y=-5 x+17
$$

$$
\Rightarrow \quad m_{\text {peep }}=4 / 5 .
$$

$-5+4 a=17 \Rightarrow a=\frac{11}{2}$
$15+46=17 \quad \Rightarrow \quad b=\frac{1}{2}$
\Rightarrow midpoint of $A B$ is $(1,3)$
\qquad
$y-3=\frac{4}{5}(x-1)$
$\Rightarrow 5 y-15=4 x-4$
$\Rightarrow 5 y=4 x+11$
\qquad
\qquad
\qquad
\qquad

Turn over for the next question
$5 \quad$ An arithmetic sequence has first term a and common difference d.
The sum of the first 16 terms of the sequence is 260
5 (a) Show that $4 a+30 d=65$

$$
\begin{aligned}
S_{i 6}= & 260 . \\
& \frac{16}{2}(2 a+15 d)=260 \\
& \Rightarrow 2 a+15 d=32.5
\end{aligned}
$$

\qquad

$$
\Rightarrow 4 a+30 d=65
$$

5 (b) Given that the sum of the first 60 terms is 315 , find the sum of the first 41 terms.

$$
\begin{array}{rl}
S_{60}=315 & 30(2 a+59 d)=315 \\
& \Rightarrow 2 a+59 d=10.5 \\
& \Rightarrow 4 a+118 d
\end{array}
$$

\qquad
\qquad

$$
\Rightarrow \quad a=20
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5 (c) $\quad S_{n}$ is the sum of the first n terms of the sequence.
Explain why the value you found in part (b) is the maximum value of S_{n}
[2 marks]
When $n=49, \quad U_{\operatorname{sen}}=0$.
So, for $n>41, U_{n}<0$ and for $n<41, U_{n}>0$.
\qquad
The value of S_{0} begins to decrease for $n>41$, so it is the maximum value.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

6 The function f is defined by

$$
\mathrm{f}(x)=\frac{1}{2}\left(x^{2}+1\right), x \geq 0
$$

6 (a) Find the range of f.

$$
x \geqslant 1 \frac{1}{2}
$$

$$
\begin{aligned}
y=1 / 2\left(x^{2}+1\right) & \Rightarrow \quad x=\frac{1}{2}\left(y^{2}+1\right) \\
& \Rightarrow 2 x=y^{2}+1 \\
& \Rightarrow y^{2}=2 x-1 \\
& \Rightarrow y=\sqrt{2 x-1}
\end{aligned}
$$

$$
\Rightarrow x \geqslant \frac{1}{2}
$$

\qquad
\qquad
\qquad

6 (b) (ii) State the range of $\mathrm{f}^{-1}(x)$
\qquad

$$
f^{-1}(x) \geqslant 0 .
$$

\qquad
\qquad

6 (c) State the transformation which maps the graph of $y=\mathrm{f}(x)$ onto the graph of

$$
y=\mathrm{f}^{-1}(x)
$$

Reflection in $y=x$

6 (d) Find the coordinates of the point of intersection of the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$
$\frac{1}{2}\left(x^{2}+1\right)=\sqrt{2 x-1}$

$$
\frac{1}{4}\left(x^{4}+2 x^{2}+1\right)-2 x+1=0 .
$$

$\Rightarrow x^{4}+2 x^{2}-8 x+5=0$
$\Rightarrow x=1$
$\Rightarrow y=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

7 (a) By sketching the graphs of $y=\frac{1}{x}$ and $y=\sec 2 x$ on the axes below, show that the equation

$$
\frac{1}{x}=\sec 2 x
$$

has exactly one solution for $x>0$

7 (b) By considering a suitable change of sign, show that the solution to the equation lies between 0.4 and 0.6
[2 marks]
$\frac{\frac{1}{x}-\sec 2 x=0}{\frac{1}{644}-\sec 0.8=1.064 \ldots}$
\square The solution must lie between 0.4 and 0.6.

7 (c) Show that the equation can be rearranged to give

$$
\begin{aligned}
x & =\frac{1}{2} \cos ^{-1} x \\
\frac{1}{x}=\frac{1}{\cos 2 x} & \Rightarrow \quad x=\cos 2 x \\
& \Rightarrow x=\frac{1}{2} \cos ^{-1} x .
\end{aligned}
$$

7 (d) (i) Use the iterative formula

$$
x_{n+1}=\frac{1}{2} \cos ^{-1} x_{n}
$$

with $x_{1}=0.4$, to find x_{2}, x_{3} and x_{4}, giving your answers to four decimal places.
[2 marks]
$x_{2}=\frac{1}{2} \cos ^{-1} 0.4=0.5796$
$x_{3}=\frac{1}{2} \cos ^{-1} 0.5796 \ldots=0.4763 \mathrm{~m}$
$x_{4}=\frac{1}{2} \cos ^{-1} 0.4763 \ldots=0.5372$
\qquad
\qquad
\qquad

7 (d) (ii) On the graph below, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_{2}, x_{3} and x_{4}.
[2 marks]

$8 \quad \mathrm{P}(n)=\sum_{k=0}^{n} k^{3}-\sum_{k=0}^{n-1} k^{3}$ where n is a positive integer.
8 (a) Find $P(3)$ and $P(10)$

$$
\begin{aligned}
& P(n)=n^{3} \\
& \Rightarrow P(3)=27 \\
& \Rightarrow P(10)=1000
\end{aligned}
$$

8 (b) Solve the equation $\mathrm{P}(n)=1.25 \times 10^{8}$
\qquad
\qquad

$$
\Rightarrow \quad n=500
$$

\qquad
\qquad
\qquad

9 Prove that the sum of a rational number and an irrational number is always irrational.

Assume their sum is rational.
Then let the rational number be given by $\frac{a}{b}$, and the irrational number by n. Also, let their sum be given by $\frac{c}{d}$. a, b, c and d are all $\frac{a}{b}+n=\frac{c}{d}$ integers.

Then $n=\frac{c}{d}-\frac{a}{b}$ $=b c-a d$ bd

Then n is rational, which contradicts the assumption that n is irrational.
\qquad
\qquad

Turn over for the next question

10 The volume of a spherical bubble is increasing at a constant rate.
Show that the rate of increase of the radius, r, of the bubble is inversely proportional to r^{2}

Volume of a sphere $=\frac{4}{3} \pi r^{3}$
\qquad

11 Jodie is attempting to use differentiation from first principles to prove that the gradient of $y=\sin x$ is zero when $x=\frac{\pi}{2}$

Jodie's teacher tells her that she has made mistakes starting in Step 4 of her working. Her working is shown below.

Step 1
Gradient of chord $A B=\frac{\sin \left(\frac{\pi}{2}+h\right)-\sin \left(\frac{\pi}{2}\right)}{h}$

Step 2

$$
=\frac{\sin \left(\frac{\pi}{2}\right) \cos (h)+\cos \left(\frac{\pi}{2}\right) \sin (h)-\sin \left(\frac{\pi}{2}\right)}{h}
$$

Step 3
$=\sin \left(\frac{\pi}{2}\right)\left(\frac{\cos (h)-1}{h}\right)+\cos \left(\frac{\pi}{2}\right) \frac{\sin (h)}{h}$
Step $4 \quad$ For gradient of curve at A,
let $h=0$ then
$\frac{\cos (h)-1}{h}=0$ and $\frac{\sin (h)}{h}=0$
Step $5 \quad$ Hence the gradient of the curve at A is given by

$$
\sin \left(\frac{\pi}{2}\right) \times 0+\cos \left(\frac{\pi}{2}\right) \times 0=0
$$

Complete Steps 4 and 5 of Jodie's working below, to correct her proof.
Step 4
For gradient of curve at A,

Step $5 \quad$ Hence the gradient of the curve at A is given by

$$
\sin \left(\frac{\pi}{2}\right) \times 0+\cos \left(\frac{\pi}{2}\right) \times 1
$$

\qquad
\qquad

Turn over for the next question

$$
\frac{\sin (h)}{h}=1
$$

12 (a) Show that the equation

$$
2 \cot ^{2} x+2 \operatorname{cosec}^{2} x=1+4 \operatorname{cosec} x
$$

can be written in the form

$$
\begin{gathered}
a \operatorname{cosec}^{2} x+b \operatorname{cosec} x+c=0 \\
\frac{2\left(\operatorname{cosec}^{2} x-1\right)+2 \operatorname{cosec}^{2} x=1+4 \operatorname{cosec} x}{\Rightarrow 4-3 \operatorname{cosec}}{ }^{2} x-4 \operatorname{cosec} x-3=0
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad

12 (b) Hence, given x is obtuse and

$$
2 \cot ^{2} x+2 \operatorname{cosec}^{2} x=1+4 \operatorname{cosec} x
$$

find the exact value of $\tan x$
Fully justify your answer.
\qquad

Since $(\operatorname{cosec} x) \geqslant 1, \operatorname{cosec} x \neq \frac{-1}{2}$

\qquad

$\Rightarrow \cot ^{2} x=5 / 4$
$\Rightarrow \quad \tan ^{2} x=4 / 5$
$\Rightarrow \tan x=-2 / \sqrt{5}$.
\qquad
\qquad

Turn over for the next question

13 A curve, C, has equation

$$
y=\frac{\mathrm{e}^{3 x-5}}{x^{2}}
$$

Show that C has exactly one stationary point.
Fully justify your answer.
\qquad

$$
f=e^{3 x-5} \quad \Rightarrow \quad f^{\prime}=3 e^{3 x-5}
$$

$$
g=x^{2} \Rightarrow g^{\prime}=2 x
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{3 x^{2} e^{3 x-5}-2 x e^{3 x-5}}{x^{4}}
$$

$$
=\frac{\left(3 x^{2}-2 x\right) e^{3 x-5}}{x^{4}}
$$

$$
=\frac{x(3 x-2) e^{3 x-5}}{x^{4}}
$$

Stationary points occur when $\frac{d y}{d x}=0$.
\qquad
zero in this case.
\qquad solution is $3 x-2=0$, or, $x=\frac{2}{3}$.
\qquad
\qquad
\qquad
\qquad

14 The graph of $y=\frac{2 x^{3}}{x^{2}+1}$ is shown for $0 \leq x \leq 4$

Caroline is attempting to approximate the shaded area, A, under the curve using the trapezium rule by splitting the area into n trapezia.

14 (a) When $n=4$
14 (a) (i) State the number of ordinates that Caroline uses.
\qquad
\qquad
\qquad

14 (a) (ii) Calculate the area that Caroline should obtain using this method.
Give your answer correct to two decimal places.
[3 marks]

x	0	1	2	3	4
y	0	1	3.2	5.4	7.5294
y					

\qquad
\qquad

$$
\begin{aligned}
& \frac{1}{2} \times 1 \times(0+7.5294+2(1+3.2+5.4)) \\
& =13.36
\end{aligned}
$$

14 (b) Show that the exact area of A is

$$
16-\ln 17
$$

Fully justify your answer.
\qquad
Let $u=x^{2}+1$. Then $\frac{d u}{d x}=2 x$. $x=0 \Rightarrow u=1 \quad$ Then $d x=\frac{d u}{d 2 x}$.

$$
x=4 \Rightarrow u=17 .
$$

$$
=[u-\ln u]_{1}^{17}
$$

$$
=17-\ln 17-1
$$

$$
=16-\ln 17 .
$$

Question 14 continues on the next page

14 (c) Explain what would happen to Caroline's answer to part (a)(ii) as $n \rightarrow \infty$
\qquad

$$
16-\ln 17
$$

\qquad

15 (a) At time t hours after a high tide, the height, h metres, of the tide and the velocity, v knots, of the tidal flow can be modelled using the parametric equations

$$
\begin{aligned}
& v=4-\left(\frac{2 t}{3}-2\right)^{2} \\
& h=3-2 \sqrt[3]{t-3}
\end{aligned}
$$

High tides and low tides occur alternately when the velocity of the tidal flow is zero.
A high tide occurs at 2 am.
15 (a) (i) Use the model to find the height of this high tide.

$$
h=3-2 \sqrt[3]{-3}=5.88 m
$$

15 (a) (ii) Find the time of the first low tide after 2 am .

$$
V=0=4-\left(\frac{2 t}{3}-2\right)^{2}
$$

\qquad

$$
\Rightarrow \quad \frac{2 t}{3}-2=2 .
$$

$$
\Rightarrow t=6
$$

$$
\Rightarrow \quad 8 \mathrm{am}
$$

\qquad
\qquad
\qquad
\qquad

15 (a) (iii) Find the height of this low tide.

$$
h=3-2 \sqrt[3]{3}=0.12 \mathrm{~m}
$$

\qquad
\qquad

15 (b) Use the model to find the height of the tide when it is flowing with maximum velocity.

$$
v \text { is maximised when } \frac{2 t}{3}-2=0
$$

$$
\text { or, } \quad t=3
$$

When $t=3$,

$$
h=3-2 \sqrt[3]{0}=3 m
$$

\qquad
\qquad
\qquad
\qquad
\qquad

15 (c) Comment on the validity of the model.
The model is limited by time.
As t increases, the height continues to decrease (i.e. after the point of low tide). (when $t=6$).

Turn over for the next question

16 (a) $\quad y=\mathrm{e}^{-x}(\sin x+\cos x)$
Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Simplify your answer.

$$
\begin{array}{rlrl}
y & =e^{-x}(\sin x+\cos x) & & f=e^{-x} \\
\frac{d y}{d x} & =-e^{-x}(\sin x+\cos x)+e^{-x}(\cos x-\sin x) & & f^{\prime}=-e^{-x} \\
& =-2 e^{-x} \sin x . & & g=\sin x+\cos x \\
& & g^{\prime}=\cos x-\sin x .
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

16 (b) Hence, show that

$$
\int \mathrm{e}^{-x} \sin x \mathrm{~d} x=a \mathrm{e}^{-x}(\sin x+\cos x)+c
$$

where a is a rational number.

$$
\int-2 e^{-x} \sin x d x=e^{-x}(\sin x+\cos x)+c
$$

$$
\Rightarrow \quad \int e^{-x} \sin x d x=\frac{-1}{2} e^{-x}(\sin x+\cos x)+c .
$$

\qquad
\qquad
\qquad

16 (c) A sketch of the graph of $y=\mathrm{e}^{-x} \sin x$ for $x \geq 0$ is shown below.
The areas of the finite regions bounded by the curve and the x-axis are denoted by $A_{1}, A_{2}, \ldots, A_{n}, \ldots$

16 (c) (i) Find the exact value of the area A_{1}

Limits of A_{1} are 0 and π.
$\int_{0}^{\pi} e^{-x} \sin x d x=-\frac{1}{2}\left[e^{-x}(\sin x+\cos x)\right]_{0}^{\pi}$

\qquad
\qquad
\qquad

16 (c) (ii) Show that

$$
\frac{A_{2}}{A_{1}}=\mathrm{e}^{-\pi}
$$

Limits of A_{2} are π and 2π.

$$
\begin{aligned}
A_{2}=\int_{\pi}^{2 \pi} y d x & =\frac{-1}{2}\left[e^{-x}(\sin x+\cos x)\right]_{\pi}^{2 \pi} \\
& =\frac{-\frac{1}{2}\left[e^{-2 \pi}+e^{-\pi}\right]}{2}=\frac{e^{-\pi}+e^{-2 \pi}}{2} \\
& =\frac{e^{-\pi}+1}{2} e^{-\pi} \\
\frac{e^{-\pi}}{A_{1}^{2}} & =\frac{e^{-\pi}}{2}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

16 (c) (iii) Given that

$$
\frac{A_{n+1}}{A_{n}}=\mathrm{e}^{-\pi}
$$

show that the exact value of the total area enclosed between the curve and the x-axis is

$$
\frac{1+\mathrm{e}^{\pi}}{2\left(\mathrm{e}^{\pi}-1\right)}
$$

The values of A_{n} form a geometric
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

