Answer ALL questions. Write your answers in the spaces provided.

1. [In this question position vectors are given relative to a fixed origin O]

At time t seconds, where $t \geqslant 0$, a particle, P, moves so that its velocity $\mathbf{v} \mathrm{m} \mathrm{s}^{-1}$ is given by

$$
\mathbf{v}=6 t \mathbf{i}-5 t^{\frac{3}{2}} \mathbf{j}
$$

When $t=0$, the position vector of P is $(-20 \mathbf{i}+20 \mathbf{j}) \mathrm{m}$.
(a) Find the acceleration of P when $t=4$
(b) Find the position vector of P when $t=4$

$$
\text { a) } \quad \begin{aligned}
\underline{a}=\frac{d \underline{v}}{d t} & =6 \underline{i}-5\left(\frac{3}{2}\right) t^{1 / 2} \underline{\jmath} \\
& =6 \underline{i}-\frac{15}{2} t^{1 / 2} \underline{\jmath} \\
t=4 & \Rightarrow \underline{a}=6 i-15 \underline{\jmath}
\end{aligned}
$$

b) $\underline{s}=\int \underline{v} d t$

$$
=\int 6 t i-5 t^{\frac{3}{2}} \jmath d t
$$

$$
=3 t^{2} \underline{1}-2 t^{5 / 2} \underline{\jmath}+\underline{s}_{0}
$$

$$
t=0:
$$

$$
-20 \underline{i}+20 \underline{j}=S_{0}
$$

$$
\Rightarrow \quad \underline{S}=\left(3 t^{2}-20\right) i+\left(20-2 t^{5 / 2}\right) \underline{\jmath}
$$

$$
t=4:
$$

$$
\begin{aligned}
S & =(48-20) \hat{i}+(20-64) \underline{\jmath} \\
& =28 i-44 \hat{\jmath}
\end{aligned}
$$

2. A particle, P, moves with constant acceleration $(2 \mathbf{i}-3 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$

At time $t=0$, the particle is at the point A and is moving with velocity $(-\mathbf{i}+4 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$
At time $t=T$ seconds, P is moving in the direction of vector $(3 \mathbf{i}-4 \mathbf{j})$
(a) Find the value of T.

At time $t=4$ seconds, P is at the point B.
(b) Find the distance $A B$.
a)

$$
\begin{align*}
& \underline{v}=\underline{u}+\underline{a} t . \tag{4}\\
& \underline{v}=(-\underline{i}+4 \underline{j})+(2 i-3 \underline{j}) T \\
& \\
& \frac{4-3 T}{-1+2 T}=-4 / 3
\end{align*}
$$

$$
\begin{gathered}
12-9 T=4-8 T \\
\Rightarrow \quad T=8 .
\end{gathered}
$$

b) $\underline{s}=\underline{u} t+1 / 2 \underline{a} t^{2}$.

$$
\left.\underline{S}_{\overrightarrow{A B}}=(-i+4 \underline{j}) t+(i-3 / 2)\right) t^{2}
$$

$$
\begin{aligned}
& t=4: \\
&=-4 \overrightarrow{A B} \\
&=-4 \hat{i}+16 \underline{j}+16 \underline{i}-24 \underline{j} \\
& \Rightarrow|A B|=\sqrt{12^{2}+\delta^{2}}=\sqrt{208}=14.42 \mathrm{~m} .
\end{aligned}
$$

3.

Figure 1
Two blocks, A and B, of masses $2 m$ and $3 m$ respectively, are attached to the ends of a light string.

Initially A is held at rest on a fixed rough plane.
The plane is inclined at angle α to the horizontal ground, where $\tan \alpha=\frac{5}{12}$
The string passes over a small smooth pulley, P, fixed at the top of the plane.
The part of the string from A to P is parallel to a line of greatest slope of the plane.
Block B hangs freely below P, as shown in Figure 1.
The coefficient of friction between A and the plane is $\frac{2}{3}$
The blocks are released from rest with the string taut and A moves up the plane.
The tension in the string immediately after the blocks are released is T.
The blocks are modelled as particles and the string is modelled as being inextensible.
(a) Show that $T=\frac{12 m g}{5}$

After B reaches the ground, A continues to move up the plane until it comes to rest before reaching P.
(b) Determine whether A will remain at rest, carefully justifying your answer.
(c) Suggest two refinements to the model that would make it more realistic.
a) $R_{A}=2 \mathrm{mg} \cos \alpha=\frac{24}{13} \mathrm{mg}$.

$$
\begin{aligned}
& \text { Fr is limiting: } \\
& \qquad F_{r_{A}}=\frac{2}{3} \times \frac{24}{13} \mathrm{mg} .=\frac{48}{39} \mathrm{mg} .
\end{aligned}
$$

Question 3 continued

$$
\begin{aligned}
& \text { A: } \quad T-\left(2 m g \sin \alpha+\frac{48}{39} m g\right)=2 m a . \\
& \Rightarrow T-\left(\frac{30}{39}+\frac{48}{39}\right) m g=2 m a \\
& \Rightarrow T-2 m g=2 m a . \\
& \Rightarrow 3 T-6 m g=6 m a
\end{aligned}
$$

B: $\quad 3 m g-T=3 m a$

$$
\begin{aligned}
& \Rightarrow 6 m g-2 T=6 m a . \\
& \Rightarrow 6 m g-2 T=3 T-6 m g \\
& \Rightarrow 12 m g=5 T \\
& \Rightarrow T=\frac{12 m g}{5} .
\end{aligned}
$$

b) $\quad F_{\text {max }}=\frac{16}{13} \mathrm{mg}$.

$$
\begin{gathered}
2 m g \sin \alpha=\frac{10}{13} \mathrm{mg} \\
\frac{16}{13} \mathrm{mg}>\frac{10}{13} \mathrm{mg}
\end{gathered}
$$

So A will not move down the plane.
c) Allow the sting to be extensible. Involve friction at the pulley P.
4.

Figure 2
A ramp, $A B$, of length 8 m and mass 20 kg , rests in equilibrium with the end A on rough horizontal ground.

The ramp rests on a smooth solid cylindrical drum which is partly under the ground The drum is fixed with its axis at the same horizontal level as A.

The point of contact between the ramp and the drum is C, where $A C=5 \mathrm{~m}$, as shown in Figure 2.

The ramp is resting in a vertical plane which is perpendicular to the axis of the drum, at an angle θ to the horizontal, where $\tan \theta=\frac{7}{24}$

The ramp is modelled as a uniform rod.
(a) Explain why the reaction from the drum on the ramp at point C acts in a direction which is perpendicular to the ramp.
(b) Find the magnitude of the resultant force acting on the ramp at A.

The ramp is still in equilibrium in the position shown in Figure 2 but the ramp is not now modelled as being uniform.

Given that the centre of mass of the ramp is assumed to be closer to A than to B,
(c) state how this would affect the magnitude of the normal reaction between the ramp and the drum at C.

Question 4 continued
b) Resolving vertically: $R_{A}+R_{c} \cos \theta=20 \mathrm{~g}$.

Resolving horizontally: $F_{r}=R_{c} \sin \theta$

Moments about A :

$$
\left.\begin{array}{rl}
20 g \times 4 \cos \theta=5 R_{c}
\end{array}\right] .
$$

$$
\begin{aligned}
R_{A} & =20 g-R_{c} \cos \theta \\
& =51.49312 \mathrm{~N}
\end{aligned}
$$

$$
F_{r}=150.528 \times \frac{7}{25}=42.14784
$$

$$
\begin{aligned}
\Rightarrow \mid \text { Force at } A \mid & =\sqrt{51.49312^{2}+42.14784^{2}} \\
& =\sqrt{4427.981824} \\
& =66.54 \mathrm{~N} .
\end{aligned}
$$

c) The magaitude of the reaction at C, " R_{C} " would decrease.
5.

Figure 3
The points A and B lie 50 m apart on horizontal ground.
At time $t=0$ two small balls, P and Q, are projected in the vertical plane containing $A B$.
Ball P is projected from A with speed $20 \mathrm{~m} \mathrm{~s}^{-1}$ at 30° to $A B$.
Ball Q is projected from B with speed $u \mathrm{~ms}^{-1}$ at angle θ to $B A$, as shown in Figure 3.
At time $t=2$ seconds, P and Q collide.
Until they collide, the balls are modelled as particles moving freely under gravity.
(a) Find the velocity of P at the instant before it collides with Q.
(b) Find
(i) the size of angle θ,
(ii) the value of u.
(6)
(c) State one limitation of the model, other than air resistance, that could affect the accuracy of your answers.
(1)
a) A: Horizontal: $20 \cos 30^{\circ}$.

$$
\begin{aligned}
& \text { Vertical: } \quad u=20 \sin 30^{\circ}, a=-9.8, \quad t=2, v=? \\
& v=20 \sin 30^{\circ}-19.6=-9.6 \\
&\left|V_{A}\right|=\sqrt{\left(20 \cos 30^{\circ}\right)^{2}+9.6^{2}}=19.8 \mathrm{~ms}^{-1} .
\end{aligned}
$$

b)i, \boldsymbol{i} Horizontal: $\quad A: \quad S=S_{A}, u=20 \cos 30^{\circ}, a=0, t=2$

$$
B: \quad S=S_{B}, \quad u=u \cos \theta, \quad a=0, \quad t=2 .
$$

$$
\begin{aligned}
& S_{A}+S_{B}=50 . \\
& \begin{aligned}
& S_{A}=40 \cos 30^{\circ} \\
& S_{B}=2 u \cos \theta . \\
& \Rightarrow \quad 2 u \cos \theta=50-20 \sqrt{3} . \\
& \Rightarrow u \cos \theta=25-10 \sqrt{3}
\end{aligned}
\end{aligned}
$$

Question 5 continued
Vertical:

$$
\begin{aligned}
& A: \quad S=S_{A}, \quad u=20 \sin 30^{\circ}, \quad a=-g, t=2 . \\
& B: \quad S=S, \quad u=u \sin \theta, \quad a=-9, \quad t=2 .
\end{aligned}
$$

$$
\begin{aligned}
A: \quad S= & 20-2 g \\
B: \quad S= & 2 u \sin \theta-2 g . \\
& \Rightarrow \quad 2 u \sin \theta=20 \\
& \Rightarrow u \sin \theta=10 .
\end{aligned}
$$

$$
\begin{aligned}
& u \sin \theta=(0, \quad u \cos \theta=25-10 \sqrt{3} \\
& \Rightarrow u^{*}=\sqrt{10^{2}+(25-10 \sqrt{3})^{2}}=12.609 \mathrm{~ms}^{-1} . \\
& \tan \theta=\frac{10}{25-10 \sqrt{3}} \\
& \Rightarrow \theta=\tan ^{-1}\left(\frac{10}{25-10 \sqrt{3}}\right)=52.478^{\circ} .
\end{aligned}
$$

c) The model doesn't consider the fact that the balls are not particles, so they do not move freely under granity.

