Please check the examination details below before entering your candidate information
 Thursday 6 June 2019

Morning (Time: 1 hour 30 minutes)	Paper Reference 1MA1/2H

Mathematics

Paper 2 (Calculator) Higher Tier

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You must show all your working.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may be used.

- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions.
 Write your answers in the spaces provided.
 You must write down all the stages in your working.

1 (a) Solve $14 n>11 n+6$

$$
\begin{aligned}
& 14 n>11 n+6 \\
& \Rightarrow 14 n-11 n>6 \\
& \Rightarrow 3 n>6 \\
& \Rightarrow n>2
\end{aligned}
$$

(b) On the number line below, show the set of values of x for which $-2<x+3 \leqslant 4$

(Total for Question 1 is $\mathbf{5}$ marks)

2 On the grid below, draw the graph of $y=2 x-3$ for values of x from -2 to 4

3 Hannah is planning a day trip for 195 students.
She asks a sample of 30 students where they want to go.
Each student chooses one place.
The table shows information about her results.

Place	Number of students
Theme Park	10
Theatre	5
Sports Centre	8
Seaside	7

(i) Work out how many of the 195 students you think will want to go to the Theme Park.

$$
\frac{10}{30} \times 195
$$

(ii) State any assumption you made and explain how this may affect your answer. The sample taken is purely random, if not, the data is not representative of the population (of 195 students).

4 A container is in the shape of a cuboid.

The container is $\frac{2}{3}$ full of water.
A cup holds 275 ml of water.
What is the greatest number of cups that can be completely filled with water from the container?
Container volume: $30 \mathrm{~cm} \times 6 \mathrm{~cm} \times 19 \mathrm{~cm}=3420 \mathrm{~cm}^{3}$, which holds 3420 mL .

$$
2 / 3 \times 3420 \mathrm{~mL}=2280 \mathrm{~mL}
$$

$$
\begin{aligned}
\frac{2280 \mathrm{ml}}{275 \mathrm{~mL}} & =8.2 \dot{90} \\
& \Rightarrow 8 \mathrm{cups}
\end{aligned}
$$

$5 A B C$ is a right-angled triangle.

Calculate the length of $A B$.
Give your answer correct to 2 decimal places.

$$
\begin{aligned}
\sin 38^{\circ}=\frac{A B}{16} \Rightarrow A B & =16 \sin 38^{\circ} \\
& =9.85 \mathrm{~cm}
\end{aligned}
$$

6 Sally used her calculator to work out the value of a number y.
The answer on her calculator display began

$$
8.3
$$

Complete the error interval for y.

$$
8 \cdot 3 \leqslant y<8 \cdot 4
$$

(Total for Question 6 is $\mathbf{2}$ marks)
$7 £ 360$ is shared between Abby, Ben, Chloe and Denesh.
The ratio of the amount Abby gets to the amount Ben gets is 2:7
Chloe and Denesh each get 1.5 times the amount Abby gets.
Work out the amount of money that Ben gets.

$$
\begin{aligned}
& A: B: C: D \\
&= 2: 7: 3: 3 \\
& 2+7+3+3=15 \text { parts } \\
& \text { Ben }= \frac{7}{15} \times f 360=f 168
\end{aligned}
$$

8 (a) Write 0.00562 in standard form.
\qquad
(b) Write 1.452×10^{3} as an ordinary number.

9 The circumference of circle B is 90% of the circumference of circle \mathbf{A}.
(a) Find the ratio of the area of circle \mathbf{A} to the area of circle \mathbf{B}.

$$
r_{B}=0.9 r_{A}
$$

Circumference: $2 \pi r$.

Area B: $\pi r_{B}{ }^{2}=0.81 \pi r_{A}{ }^{2}$
Area A: $\pi r_{A}{ }^{2}=\pi r_{A}{ }^{2}$

$$
100: 81
$$

Square \mathbf{E} has sides of length $e \mathrm{~cm}$.
Square \mathbf{F} has sides of length $f \mathrm{~cm}$.
The area of square \mathbf{E} is 44% greater than the area of square \mathbf{F}.
(b) Work out the ratio $e: f$

$$
\begin{aligned}
& e^{2}=1.44 f^{2} \\
\Rightarrow & e=1.2 f \\
\Rightarrow & 5 e=6 f \\
\Rightarrow & e: f=6: 5 .
\end{aligned}
$$

10 Mary travels to work by train every day.
The probability that her train will be late on any day is 0.15
(a) Complete the probability tree diagram for Thursday and Friday.

(b) Work out the probability that her train will be late on at least one of these two days.

$$
(0.15)^{2}+(0.15 \times 0.85)+\underset{L L}{(0.85} \times \underset{\mathrm{NL}}{(0.15)} \mathrm{L}
$$

0.2775

11 The grouped frequency table gives information about the times, in minutes, that 80 office workers take to get to work.

Time $(t$ minutes $)$	Frequency
$0<t \leqslant 20$	5
$20<t \leqslant 40$	30
$40<t \leqslant 60$	20
$60<t \leqslant 80$	15
$80<t \leqslant 100$	8
$100<t \leqslant 120$	2

(a) Complete the cumulative frequency table.

Time (t minutes)	Cumulative frequency
$0<t \leqslant 20$	5
$0<t \leqslant 40$	35
$0<t \leqslant 60$	55
$0<t \leqslant 80$	70
$0<t \leqslant 100$	78
$0<t \leqslant 120$	80

(b) On the grid, draw the cumulative frequency graph for this information.

(c) Use your graph to find an estimate for the percentage of these office workers who take more than 90 minutes to get to work.
within 90 minutes $\rightarrow 74$ workers
$\Rightarrow 6$ workers take longer than GOmins.

$$
\frac{6}{80} \times 100=7.5 \%
$$

$12 O A B$ is a sector of a circle with centre O and radius 7 cm .

The area of the sector is $40 \mathrm{~cm}^{2}$
Calculate the perimeter of the sector.
Give your answer correct to 3 significant figures.

$$
\begin{aligned}
\text { Area }=40 & =\frac{1}{2} \times 7^{2} \times \theta \\
& \Rightarrow \theta=\frac{80}{49}
\end{aligned}
$$

Arc length $=L=r \theta=7 \times \frac{80}{49}=\frac{80}{7}$

$$
\text { Perimeter }=\frac{80}{7}+7+7 \approx 25.4 \mathrm{~cm}
$$

13. Show that $6+\left[(x+5)+\frac{x^{2}+3 x-10}{x-1}\right]$ simplifies to $\frac{a x-b}{c x-d}$ where a, b, c and d are integers.

$$
\begin{aligned}
& x^{2}+3 x-10=(x+5)(x-2) \\
& 6+\left[(x+5) \div \frac{(x+5)(x-2)}{(x-1)}\right] \\
& =6+\frac{(x+5)(x-1)}{(x+5)(x-2)} \\
& =6+\frac{x-1}{x-2} \\
& =6+x-2)+x-1 \\
& =6-2
\end{aligned}
$$

14 A car moves from rest.
The graph gives information about the speed, v metres per second, of the car l seconds after it starts to move.

(a) (i) Calculate an estimate of the gradient of the graph at $t=15$

$$
\frac{22.5-10}{20-5}=0.83
$$

(ii) Describe what your answer to part (i) represents.

Acceleration.
(b) Work out an estimate for the distance the car travels in the first 20 seconds of its journey. Use 4 strips of equal width.

$$
\begin{aligned}
& \left(\frac{5 \times 4}{2}\right)+\left(\frac{4+12}{2} \times 5\right)+\left(\frac{12+18}{2} \times 5\right)+\left(\frac{18+20}{2} \times 5\right) \\
& =10+40+75+95 \\
& =220
\end{aligned}
$$

15 Make m the subject of the formula $f=\frac{3 m+4}{m-1}$

$$
\begin{aligned}
& f(m-1)=3 m+4 \\
& f m-f=3 m+4 \\
& f m-3 m=f+4 \\
& m=\frac{f+4}{f-3}
\end{aligned}
$$

$$
m=\frac{f+4}{f-3}
$$

16 The straight line \mathbf{L} has the equation $3 y=4 x+7$
The point A has coordinates $(3,-5)$
Find an equation of the straight line that is perpendicular to L and passes through A.

$$
\begin{aligned}
& 3 y=4 x+7 \\
& \Rightarrow y=\frac{4}{3} x+\frac{7}{3} \Rightarrow m=\frac{4}{3} . \\
& m_{\text {pere }}=\frac{-1}{(4 / 3)}=\frac{-3}{4} \\
& y-(-5)=-\frac{3}{4}(x-3) \\
& y+5=\frac{-3}{4} x+\frac{9}{4} \\
& \Rightarrow y=\frac{-3}{4} x-\frac{11}{4}
\end{aligned}
$$

$$
y=\frac{-3}{4} x-\frac{11}{4}
$$

(Total for Question 16 is $\mathbf{3}$ marks)

17 There are some small cubes and some large cubes in a bag.
The cubes are red or the cubes are yellow.
The ratio of the number of small cubes to the number of large cubes is $4: 7$
The ratio of the number of red cubes to the number of yellow cubes is $3: 5$
(a) Explain why the least possible number of cubes in the bag is 88

The
LCM of
$(4+7)=11$ and $(3+5)=8 \quad i 5$
88. \qquad

All the small cubes are yellow.
(b) Work out the least possible number of large yellow cubes in the bag.

Let there be 88 cubes.
Then, there are ${ }^{(8 \times 4)} 32$ small, and ${ }^{(8 \times 7)} 56$ large.
There are $\left.{ }^{(3 \times 11)} 3\right)^{\text {red }}{ }^{(5 \times 1)}$, and 55^{5} yellow.

Since all small cubes are yellow,
there are
$55-32=23$ large yellow cubes.

18 The points A, B, C and D lie on a circle.
$C D E$ is a straight line.

Opposite angles of a cyclic quadrilateral sum to 180°, so $\angle B C D=180^{\circ}-70^{\circ}=110^{\circ}$.
$\Rightarrow \angle C B D=\angle B D C=\frac{180-110}{2}=35^{\circ}$.
$\Rightarrow \angle A D E=180^{\circ}-\left(70^{\circ}+35^{\circ}\right)=75^{\circ}$ From angles on straight line summing to 180°.

19 The diagram shows a triangular prism.

The base, $A B C D$, of the prism is a square of side length 15 cm .
Angle $A B E$ and angle $C B E$ are right angles.
Angle $E A B=35^{\circ}$
M is the point on $D A$ such that

$$
D M: M A=2: 3
$$

Calculate the size of the angle between $E M$ and the base of the prism.
Give your answer correct to 1 decimal place.

$$
\begin{aligned}
& E B=15 \tan 35^{\circ} \approx 10.50 \mathrm{~cm} \\
& B M^{2}=A M^{2}+A B^{2}
\end{aligned}
$$

$$
A M=\quad \frac{3}{5} \times 15=9 \mathrm{~cm}, \quad A B=15 \mathrm{~cm} .
$$

Then $B M=\sqrt{9^{2}+15^{2}}=17.49 \mathrm{~cm}$

Lex θ be the angle between $E M$ and $B M$.

$$
\tan \theta=\frac{10.50}{17.49} \Rightarrow \theta=30.98^{\circ}
$$

$20 C D E F$ is a quadrilateral.

$\overrightarrow{C D}=\mathbf{a}, \overrightarrow{D E}=\mathbf{b}$ and $\overrightarrow{F C}=\mathbf{a}-\mathbf{b}$.
(a) Express $\overrightarrow{F E}$ in terms of \mathbf{a} and/or \mathbf{b}.

Give your answer in its simplest form.

$$
\underline{a}-\underline{b}+\underline{a}+\underline{b}=2 \underline{a}
$$

M is the midpoint of $D E$.
X is the point on $F M$ such that $F X: X M=n: 1$
$C X E$ is a straight line.
(b) Work out the value of n.

$$
\begin{aligned}
& \overrightarrow{F M}=\underline{a}-\underline{b}+\underline{a}+\frac{1}{2} \underline{b} \\
&=2 \underline{a}-\frac{1}{2} \underline{b} \\
& \Rightarrow \overrightarrow{F X}=\frac{n}{n+1}\left(2 \underline{a}-\frac{1}{2} \underline{b}\right) \\
& \overrightarrow{C X}=\underline{b}-\underline{a}+\frac{n}{n+1}\left(2 \underline{a}-\frac{1}{2} \underline{b}\right)=\left(\frac{2 n}{n+1}-1\right) \underline{a}+\left(1-\frac{n}{2(n)}\right) \underline{b} \\
& \overrightarrow{C E}=\underline{a}+\underline{b} \text {. The direction of } \overrightarrow{C X} \text { and } \overrightarrow{C E} \\
& \text { is the same, so } \\
& \frac{2 n}{n+1}-1=1-\frac{n}{2(n+1)} \Rightarrow \frac{2 n}{n+1}+\frac{n}{2(n+1)}=2 . \\
& \frac{n^{5} m}{n+1}=4 \Rightarrow n=4 \\
& n=4
\end{aligned}
$$

(Total for Question 20 is $\mathbf{6}$ marks)

TOTAL FOR PAPER IS 80 MARKS

