MODEL SOLUTIONS

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	to a comment of the property of the second districtions and property of the second of
Forename(s)	Transfer
Candidate signature	

AS **MATHEMATICS**

Paper 2

Wednesday 22 May 2019 Morning Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- . Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- · Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- · You do not necessarily need to use all the space provided.

For Examir	ner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	1.6
10	
11	
12	
13	
14	
15	
16	
TOTAL	15.

7356/2

	is a common that the A E	Section A			
	Answer al	I questions in the	spaces provided.		5 matter
1	Find the gradient of the cu	$y = e^{-3x} \text{ at th}$	ne point where it cr	osses the y	-axis.
	Circle your answer.				[1 mark]
	_3	-1	1	3	
a					
	Find the centre of the size	10 2 1 2 1 12	6y — 12		
2	Find the centre of the circ	18 $x^2 + y^2 + 4x = 0$	0y = 12		
	Tick (✓) one box.	- 2 10-55 12			[1 mark]
	(-2, -3)	6 % 1986 00			
	(-2, 3)				
	(2, -3)				
	(2, 3)				

3 It is given that $\sin \theta = -0.1$ and $180^{\circ} < \theta < 270^{\circ}$

Find the exact value of $\cos\theta$

[2 marks]

$$(-0.1)^2 + \cos^2\theta = 1$$

$$\cos\theta = -\frac{3\sqrt{11}}{10}$$

4 Show that, for x > 0

$$\log_{10} \frac{x^4}{100} + \log_{10} 9x - \log_{10} x^3 \equiv 2(-1 + \log_{10} 3x)$$

[4 marks]

$$= 2 (\log 10 x - 1 + \log 10 3)$$

$$= 2(-1 + 109103x)$$

Turn over for the next question

Do not write outside the box

5 A triangular prism has a cross section ABC as shown in the diagram below.

Angle $ABC = 25^{\circ}$

Angle ACB = 30°

BC = 40 millimetres.

The length of the prism is 300 millimetres.

Calculate the volume of the prism, giving your answer to three significant figures.

[4 marks]

$$C = 40$$
 =7 $C = 40 \sin 30 = 24.415...$
Sin 30 Sin 125

Area =
$$\frac{1}{2} \times 40 \times (24.415...) \times \sin 25$$

= 206.4 mm²

6 A curve has equation $y = \frac{2}{x\sqrt{x}}$

The region enclosed between the curve, the x-axis and the lines x=1 and x=a has area 3 units.

Given that a > 1, find the value of a.

Fully justify your answer.

$$y = \frac{2}{x\sqrt{x}} = 2x^{-\frac{3}{2}}$$

[5 marks]

$$L_7 3 = \int_1^a 2x^{-3/2} dx = \left[-4x^{-1/2} \right]_1^a$$

$$= 7 \left(-4 \left(\alpha \right)^{-1/2} \right) - \left(-4 \left(1 \right)^{-1/2} \right) = 3$$

$$= 7 -4 \alpha^{-1/2} + 4 = 3$$

$$=7$$
 $a^{-1/2} = 1/4$

7 The points A(a, 3) and B(10, 6) lie on a circle.

AB is a diameter of the circle and passes through the point (2, 4)

The circle has equation

$$(x-c)^2 + (y-d)^2 = e$$

where c, d and e are rational numbers.

Find the values of a, c, d and e.

[6 marks]

Gradient AB:
$$\frac{4-6}{2-10} = \frac{1}{4}$$

$$\frac{3-6}{a-10} = \frac{1}{4} = 7-3 = \frac{a}{4} - \frac{10}{4}$$

$$= 7 \quad a = -2$$

Midpoint of AB =
$$\left(\frac{-2+10}{2}, \frac{3+6}{2}\right) = (4, 45)$$

Raduis² =
$$6^2 + 1.5^2 = 38.25$$

$$\alpha = -2$$

$$e = 38.25$$

$$y = x^3 + px^2 + qx - 45$$

The curve passes through point R (2, 3)

The gradient of the curve at R is 8

8 (a) Find the value of p and the value of q.

[5 marks]

Sub in R:
$$3 = 2^2 + p2^2 + 2q - 45$$

=7 $3 = 8 + 4p + 2q - 45$

$$\frac{dy}{dx} = 3x^2 + 2px + 9$$

$$\frac{dy}{dx} = 8$$
 when $x = 2$ and

$$50 \ 3(2)^2 + 2p(2) + 9 = 8$$

$$=712+4p+2=8$$

Sub
$$\bigcirc$$
 into \bigcirc : $40 = (-4-9) + 29$

$$= \frac{-48}{4} = -12$$

8 (b) Calculate the area enclosed between the normal to the curve at R and the coordinate axes.

[5 marks]

Normal gradient = -1/8

Normal equation: y-3 = -1/8(x-2)

$$=7 y = \frac{-1}{8}x + \frac{13}{4}$$

when x = 0, $y = \frac{13}{4}$

when y=0, x=26

Area = 1/2 x 26 x 13/4 = 42.25

I	HER	HIII	IIII	IRRI
ı				
ı				Ш
	() 9	7	

Turn over ▶

9 A curve C has equation y = f(x) where

$$f(x) = (x-2)(x-3)^2$$

9 (a) Find the exact coordinates of the turning points of C.

Determine the nature of each turning point.

Fully justify your answer.

[8 marks]

$$f(x) = (x-2)(x-3)^2 = (x-2)(x^2-6x+9)$$

$$= x^{3} - 6x^{2} + 9x - 2x^{2} + 12x - 18$$

$$= x^{3} - 8x^{2} + 21x - 18$$

Turning points: (3,0) min

9	(b)	State H	00 00	ordinatos	of	tho	turning	nointe	of	tho	CUITA
3	(D)	State II	ie co	ordinates	OI	trie	turriing	pomis	UI	HIE	curve

$$y = f(x+1) - 4$$

[2 marks]

y = f(x+1)-4(2,-4) and (4/3,-104)

Turn over for the next question

As part of an experiment, Zena puts a bucket of hot water outside on a day when the outside temperature is 0°C.

She measures the temperature of the water after 10 minutes and after 20 minutes. Her results are shown below.

Time (minutes)	10	20
Temperature (degrees Celsius)	30	12

Zena models the relationship between θ , the temperature of the water in °C, and t, the time in minutes, by

$$\theta = A \times 10^{-kt}$$

where A and k are constants.

10 (a) Using t = 0, explain how the value of A relates to the experiment.

[1 mark]

A is the starting temperature.

10 (b) Show that

$$\log_{10}\theta = \log_{10}A - kt$$

[1 mark]

$$\frac{109100 = 10910 (A \times 10^{-Kt})}{= 10910 A + 10910 10^{-Kt}}$$

= 10910 A - Kt 1091010

= 10910 A - KE

10 (c) Using Zena's results, calculate the values of A and k.

[4 marks]

$$30 = A \times 10^{-10K} \Rightarrow \log_{10} 30 = \log_{10} A - 10K$$

 $12 = A \times 10^{-20K} \Rightarrow \log_{10} 12 = \log_{10} A - 20K$

=7 log 10 12	= 10K	
and the second of the second o	5 log10 (2.5)	
= 0	8920.	

$$A = 75$$

10 (d) Zena states that the temperature of the water will be less than 1°C after 45 minutes.

Determine whether the model supports this statement.

[3 marks]

so model aves not support Zena's Statement.

10 (e)	Explain why Zena's model is unlikely to accurately give the value of θ after
	45 minutes.

[1 mark]

Outside temperature may have changed

after 45 minutes.

		Section B		
	Answer all o	questions in the space	es provided.	
	8) 0 8	49		
11	A survey is undertaken to fir	nd out the most popul	ar political party i	n London.
	The first 1100 available peop	ole from London are s	surveyed.	
	Identify the name of this type	e of sampling.		
	Circle your answer.			[1 mark]
	simple random	opportunity	stratified	quota
12	Manny is studying the price He calculates the value of the	e product moment co		
	price and number of pages i	n each book as 1.05		(4 mark)
	Which of the following best of	describes the value 1.	05?	
	Tick (✓) one box.			[1 mark]
	definitely correct			
	probably correct			[5 min/6]
	probably incorrect			
	definitely incorrect			

13	Denzel wants to buy a car with a propulsion type other than petrol or diesel.					
	He takes a sample, from the Large Data Set, of the ${\rm CO_2}$ emissions, in g/km, of cars with one particular propulsion type.					
	The sample is as follows					
	82 13 96 49 96 92 70 81					
13 (a)	Using your knowledge of the Large Data Set, state which propulsion type this sample					
	is for, giving a reason for your answer. [2 marks]					
	Electric/Petrol					
	Li only category with this many values.					
	Stocks were allowed at any instruction the value of from the carrier strain there are \$16.					
	Committee Commit					
	TOURS OF THE PARTY					
13 (b)	Calculate the mean of the sample. [1 mark]					
	72.375					
13 (c)	Calculate the standard deviation of the sample. [1 mark]					
	28.7					

Do not write outside the box

13 (d)	Denzel claims that the value 13 is an outlier.
13 (d) (i)	Any value more than 2 standard deviations from the mean can be regarded as an outlier.
	Verify that Denzel's claim is correct.
	72.4 - 2x287 = 15713
	Les Bertham Call
13 (d) (ii)	standard deviation.
(4 (5)	Standard demotion would decrease. [1 mark]
	Turn over for the next question

14 A probability distribution is given by

$$P(X = x) = c(4 - x)$$
, for $x = 0, 1, 2, 3$

where c is a constant.

14 (a) Show that $c = \frac{1}{10}$

[2 marks]

$$c = \frac{1}{10}$$

14 (b) Calculate $P(X \ge 1)$

[2 marks]

$$3c + 2c + c = 6c$$

Two independent events, A and B, are such that

$$P(A) = 0.2$$

$$P(A \cup B) = 0.8$$

15 (a) (i) Find P(B)

[4 marks]

PARSHA VOVENZ

$$0.8 = 0.2 + P(B) - 0.2 P(B)$$

15 (a) (ii) Find $P(A \cap B)$

[1 mark]

$$P(A) \times P(B) = P(A \cap B) = 0.2 \times 0.75 = 0.15$$

15 (b) State, with a reason, whether or not the events A and B are mutually exclusive.

[1 mark]

P(AnB) \$0 so A and B are not mutually

exclusive,

Andrea is the manager of a company which makes mobile phone chargers. 16 In the past, she had found that 12% of all chargers are faulty. Andrea decides to move the manufacture of chargers to a different factory. 16 (a) Andrea tests 60 of the new chargers and finds that 4 chargers are faulty. Investigate, at the 10% level of significance, whether the proportion of faulty chargers has reduced. [7 marks] Ho: P = 0.12 where P = proportion of family chargers. H1: P<0.12 Under Ho: X~B(60,0.12) P(X < 4) = 0.139 0.139 > 0.1 Therefore we accept Ho, as there is insufficient endence to suggest that the poportion of family chargers has reduced.

16 (b) State, in context, two assumptions that are necessary for the distribution that you have used in part (a) to be valid.

[2 marks]

1) The probability of a family charger is fixed.

2) A charger being family is independent of any other charge being family.

END OF QUESTIONS