GCSE MARKING SCHEME

SUMMER 2019

GCSE (NEW)
COMPUTER SCIENCE - UNIT 2 3500U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE COMPUTER SCIENCE (NEW)

SUMMER 2019 MARK SCHEME

UNIT 2 - COMPUTATIONAL THINKING AND PROGRAMMING

Guidance for examiners

Positive marking-It should be remembered that learners are writing under examination conditions and credit should be given for what the learner writes, rather than adopting the approach of penalising him/her for any omissions. It should be possible for a very good response to achieve full marks and a very poor one to achieve zero marks. Marks should not be deducted for a less than perfect answer if it satisfies the criteria of the mark scheme.

For questions that are objective or points-based the mark scheme should be applied precisely. Marks should be awarded as indicated and no further subdivision made.

For band marked questions mark schemes are in two parts.
Part 1 is advice on the indicative content that suggests the range of computer science concepts, theory, issues and arguments which may be included in the learner's answers. These can be used to assess the quality of the learner's response.

Part 2 is an assessment grid advising bands and associated marks that should be given to responses which demonstrate the qualities needed in $\mathrm{AO} 1, \mathrm{AO} 2$ and AO . Where a response is not credit worthy or not attempted it is indicated on the grid as mark band zero.

Banded mark schemes

Banded mark schemes are divided so that each band has a relevant descriptor. The descriptor for the band provides a description of the performance level for that band. Each band contains marks.

Examiners should first read and annotate a learner's answer to pick out the evidence that is being assessed in that question. Once the annotation is complete, the mark scheme can be applied.

This is done as a two-stage process.

Stage 1 - Deciding on the band

When deciding on a band, the answer should be viewed holistically. Beginning at the lowest band, examiners should look at the learner's answer and check whether it matches the descriptor for that band. Examiners should look at the descriptor for that band and see if it matches the qualities shown in the learner's answer. If the descriptor at the lowest band is satisfied, examiners should move up to the next band and repeat this process for each band until the descriptor matches the answer.

If an answer covers different aspects of different bands within the mark scheme, a 'best fit' approach should be adopted to decide on the band and then the learner's response should be used to decide on the mark within the band. For instance, if a response is mainly in band 2 but with a limited amount of band 3 content, the answer would be placed in band 2, but the mark awarded would be close to the top of band 2 as a result of the band 3 content.
Examiners should not seek to mark candidates down as a result of small omissions in minor areas of an answer.

Stage 2 - Deciding on the mark

Once the band has been decided, examiners can then assign a mark. During standardising (marking conference), detailed advice from the Principal Examiner on the qualities of each mark band will be given. Examiners will then receive examples of answers in each mark band that have been awarded a mark by the Principal Examiner. Examiners should mark the examples and compare their marks with those of the Principal Examiner.

When marking, examiners can use these examples to decide whether a learner's response is of a superior, inferior or comparable standard to the example. Examiners are reminded of the need to revisit the answer as they apply the mark scheme in order to confirm that the band and the mark allocated is appropriate to the response provided.

Indicative content is also provided for banded mark schemes. Indicative content is not exhaustive, and any other valid points must be credited. In order to reach the highest bands of the mark scheme a learner need not cover all of the points mentioned in the indicative content but must meet the requirements of the highest mark band. Where a response is not creditworthy, that is contains nothing of any significance to the mark scheme, or where no response has been provided, no marks should be awarded.

Q	Answer	Mark	AO1	AO2	AO3	Total
1.	Award 1 mark for each:					
(a)	<head>					
(b)			1			
(c)	 accept added details such as file name.					
(d)	<blockquote> accept added details such as an example quote.	1				

Q	Answer	Mark	AO1	AO2	AO3	Total
2.	Award 1 mark for each correct pair in the correct location: i.e. ```<h1> </h1> <center> </center> Accept either <p> or <p> </p> (No need to close p)``` (Note http:// is required or the link will not work correctly on many devices) Accept alternative tags e.g. <big></big> instead of <h1></h1>, etc and count as a single item as both must be used together Accept alternative HTML (not CSS) solutions which work (only if the identical formatting would be achieved). All correct formatting (Award 1 mark) <html> <head> <title> Track My Pet Care </title> </head> <body> <center> <h1>TrackMyPetCare.com </h1> </center> <p> The new online system for keeping track of all your pets' needs. Including: </p> <p> Vet check-ups Booster dates Birthday and other Anniversaries! </p> <p> Click the link below to find out more: </p> <p> www.TrackMyPetCare.com </p> </body> </html>			2b		10

Q	Answer	Mark	AO1	AO2	AO3	Total
6.	Brackets+Bold text indicate other accepted Pseudocode. Accept $\mathbf{i}, \mathbf{j}, \mathrm{k}$ for loops; accept any other meaningful variable name. Amendments to check for zero entered or divide by zero error (and any further validation) accepted not expected. Line numbers not necessary. Ignore indentation or lack of it. Accept alternative solutions as long as they provide exactly the same result. Example: ```currentNumber is integer maxNo is integer minNo is integer total is integer mean is real set currentNumber=0 set maxNo =0 set minNo=11 (or any number > 10) set total = 0 set mean =0``` for $i=1$ to 4 (Do) output "Enter a reading:" input currentNumber if currentNumber >maxNo then maxNo= currentNumber endif if currentNumber <minNo then minNo= currentNumber endif total=total+ currentNumber endif next i (loop until ...) mean=total/4 output "Total:", total output "Mean:" , mean output "Largest:" , maxNo output "Smallest:" , minNo End Subroutine				3b	6

Q	Answer	Mark	AO1	AO2	AO3	Total
	Award 1 Mark for each of:					
	Output Text (String literal similar to example)	1				
	Input value into a variable -must be a variable	1				
	Selection (comparison using if for smallest or largest)	1				
	Correctly adding (total=total+ currentnumber)	1				
	Output a variable - must be a variable	1				
	The solution provides all correct numerical outputs	1				
	Alternatively, a flowchart matching above award full					
credit.						

Q	Answer	Mark	AO1	AO2	AO3	Total
7.	Award 1 mark per point below:				3b	5
(a)	New world class called tank in Greenfoot environment with correct image. (accept grid of more than $9 * 9$)	1				
(b)	World is populated with two static fish objects with correct image.	1				
(c)	World is populated with two random moving (using getrandom) shark objects with correct image.	1				
(d)	World is populated with one or more crab objects with correct image, which move "left/right" only.	1				
(e)	Greenfoot world saved correctly as finalAquarium7 (ignore capital letters)	1				
	Award 1 mark for each:			2b		5
(a)	World Or Actor (condone incorrect capitalization)	1				
(b)	Ground Or WaterDrop OR Counter Or SugarCube OR Ant (condone incorrect capitalization)	1				
(c)	counter (lower case only) OR totalCount (condone incorrect capitalization) CONDONE spaces in the variable names	1				
(d)	/** Act - do whatever the actor wants to do.*/ /** */ not required	1				
(e)	public void act() (Accept no public, void, brackets - act sufficient)	1				

Q	Answer	Mark	AO1	AO2	AO3	Total
9. (a)	Award 1 mark per bulleted point below: World is pre-populated on load with: - one ant only - two or more sugar cubes - one water drop.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$			3b	13
(b)	- water and cube move "randomly" around world.	1				
(c)	- ant moves around world according to arrow keys. - ant moves with appropriate relative speed to other objects	$\begin{aligned} & 1 \\ & 1 \end{aligned}$				
(d)	- cube is removed from world on collision with ant.	1				
(e)	- sound plays when ant and cube collide	1				
(f)	- counter added to world. - counter increments when ant and cube collide.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$				
(g)	- counter decrements when water drop and ant collide. - implementation via parameter passing as opposed to wholly new method.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$				
(h)	- Greenfoot world saved correctly as finalAnts9 (ignore capitalization)	1				

