GCE

Physics A

H156/02: Depth in physics
Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Here are the subject specific instructions for this question paper.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.

A marks These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow an answer to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

Annotations available in RM Assessor

Annotation		
AE	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional pagess) to show that there is no additional work provided by the candidates. ECF if there are no further errors.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	Level 2

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
r	alternative and acceptable answers for the same marking point
rejt	Answers which are not worthy of credit
not	Answers which are not worthy of credit
ignore	Statements which are irrelevant
allow	Answers that can be accepted
()	Underlined words must be present in answer to score a mark
ECF	Alror carried forward
AW	Or reverse argument
ORA	

Question			Answer	Marks	Guidance
1	(a)	(i)	$\begin{aligned} & \frac{\Delta v}{\Delta t} \text { and } \Delta t \geq 0.20 \mathrm{~s} \\ & 9.8 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M1 A0	Allow tolerance of $\pm 1 / 2$ a small square e.g. $\frac{4.7(-0)}{0.48(-0)}=9.79$
		(ii)	$\begin{aligned} & 4.7 \text { or } \frac{1}{2} \times 0.057 \times v^{2} \\ & \frac{1}{2} \times 0.057 \times 4.7^{2}=0.629565 \\ & 0.63 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	
	(b)	(i)	$\begin{aligned} & 0.8 \times 0.63 \mathrm{~J}(0.504 \mathrm{~J}) \mathrm{OR} v^{2}=\frac{2 \times \mathrm{KE}}{0.057} \\ & v^{2}=\frac{2 \times 0.504}{0.057} \\ & 4.2(1)\left(\mathrm{ms}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow one mark for correct rearrangement of KE equation with incorrect KE 17.684
		(ii)	Straight line from $(0.48,-4.2)$ to x-axis and plotted to $\pm 1 / 2$ small square x-axis intercept at $t=0.91 \pm 0.03$ (s) from negative v	C1 A1	Allow ECF from (b)(i) Allow (0.49, -4.2) / (0.50, -4.2) / (0.51, -4.2) / (0.52, -4.2) Allow ECF for incorrect negative v
		(iii)	area under the graph $=\frac{1}{2} \times 4.2 \times 0.43$ $0.90(\mathrm{~m})$	C1 A1	Allow ECF from (b)(i) and (b)(ii) Allow use of equation of motion: e.g. $s=\frac{4.2^{2}}{2 \times 9.81}$ or $s=(-4.2 \times 0.43)+\frac{1}{2} \times 9.81 \times 0.43^{2}$ (numbers must be seen) Allow use of loss of KE = gain in PE Allow one significant figure Note 0.84 for $\Delta t=0.40$ to 0.97 for $\Delta t=0.46$
	(c)		Line will curve / be non-linear OR (magnitude of) gradient of line decreases (with increase in time) (Line will end with) a lower maximum/final velocity or hit the ground after a longer time	B1 B1	Allow sketch or gradient decreases / changes Not gradient is smaller / less steep / shallower / lower Allow ball will have a lower maximum/final velocity or hit the ground after a longer time
			Total	12	

Question			Answer		Marks	Guidance
3	(a)	(i)	(Vernier) Calliper or micrometer (screw gauge)		B1	Not rule(r)
		(ii)	$\begin{aligned} & 2.52 \\ & \pm 0.08 \end{aligned}$		$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	Allow (2.52-2.43 =) 0.09 or (2.59-2.52 = 0.07
		(iii)	$\begin{aligned} & \text { Volume }=\frac{4}{3} \times \pi \times\left(1.26 \times 10^{-2}\right)^{3}=8.379 \times 10^{-6} \\ & 8.4 \times 10^{-6} \mathrm{~m}^{2} \end{aligned}$		M1 AO	$\frac{1}{6} \times \pi \times\left(2.52 \times 10^{-2}\right)^{3} \text { OR } \frac{4}{3} \times \pi \times\left(\frac{2.52 \times 10^{-2}}{2}\right)^{3}$
		(iv)	$\begin{aligned} & \frac{0.023}{8.4 \times 10^{-6}} \text { or } 2738 \\ & 2700\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \text { or } 2.7 \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$		C1 A1	Note 2745 if using calculator value from (a)(iii) Note must be two significant figures Allow one mark for $2.7 \times 10^{6}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
		(v)	$\frac{1}{23}$ or $\frac{0.08}{2.52}$ or $\frac{0.24}{2.52}$ or 4.3% or 3.2% or 9.5% 14\% (13.8\%)		C1 A1	Allow ECF from a(ii) -3.6% or 10.7% for $\Delta d=0.09$ Allow maximum/minimum methods Note 13% for $\Delta d=0.07$ or 15% for $\Delta d=0.09$ [ECF 5.5% for $\Delta d=0.01]$
	(b)		$\begin{aligned} & \text { Extension }=0.096-0.078 \text { or } 0.018 \mathrm{~m} \\ & \text { Weight }=0.023 \times 9.81 \text { or } 0.22563 \\ & 13\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Allow ECF for incorrect mass conversion from (a)(iv) Allow $12.6\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ or $12.5\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$
	(c)	(i)	Apparent weight $=0.01 \times 13(=0.13 \mathrm{~N})$ (Upthrust $=0.226-0.13)=0.10(\mathrm{~N})$		C1 A1	Allow ECF from (b) Allow 0.008×12.5 Allow 0.1 (N) (1sf)
		(ii)	$\begin{aligned} & \rho=\frac{0.10}{9.81 \times 8.4 \times 10^{-6}} \\ & 1200\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$		C1 A1	Allow ECF from (c)(i)
				Total	15	

Question			Answer	Marks	Guidance
4	(a)	(i)	$\frac{1}{R}=\frac{1}{60}+\frac{1}{60}$ or $\frac{1}{R}=\frac{1}{60}+\frac{1}{60}+\frac{1}{60}$ or $R=\frac{60}{n}$ or $R=\frac{60 \times 60}{60+60}$ $30 \Omega+20 \Omega=50 \Omega$	M1 A1	
		(ii)	$\begin{aligned} & \frac{30}{50} \times 9 \text { or } I=\frac{9}{50}=0.18 \mathrm{~A} \\ & 5.4 \mathrm{~V} \end{aligned}$	$\mathrm{C} 1$ A1	
		(iii)	$\begin{aligned} & \left(I=\frac{5.4}{60}=\right) 0.090 \mathrm{~A} \\ & (0.09 \times 120=) 11 \end{aligned}$ C or coulomb	C1 A1 B1	Allow ECF from (a)(ii) Allow 10.8 Note 0.18 C scores two marks provided 0.09 A is seen Note 21.6 C scores one mark (for the correct unit)
		(iv)	$(11 \times 5.4$ or $0.09 \times 5.4 \times 120)=59$ or $58(\mathrm{~J})$	A1	Note 58(.3) if 10.8 C used Allow ECF from (a)(ii) and/or (a)(iii) Not 60
	(b)		$I=n A v e \text { or } v \alpha I$ larger current through \mathbf{Y} than \mathbf{Z} ORA drift velocity in \mathbf{Y} is 1.5 times drift velocity in \mathbf{Z} ORA	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow any correct rearrangement of $I=$ nAve Allow $I_{Y}=0.090 \mathrm{~A}$ and $I_{\mathrm{Z}}=0.060 \mathrm{~A}$ OR $I_{Y} / I_{\mathrm{Z}}=1.5 \mathrm{ORA}$
	(c)		$n=$ number of (free) charge carriers per unit volume / per cubic metre $/ \mathrm{m}^{-3}$ The larger the value of n, the better the conduction / greater the current ORA Copper has a larger n than carbon which has a larger n than ceramic ORA	B1 B1 B1	Allow free electrons for free charge carriers Not electrons Allow copper is a conductor / most conductive or semiconductor does not conduct as well as copper etc. Allow values for n
			Total	14	

Question			Answer	Marks	Guidance
5	(a)	(i)	0.45 (m)	B1	
		(ii)	4.0 (m)	B1	Ignore significant figures
		(iii)	$\begin{aligned} & \frac{0.5}{4} \text { or } \frac{1}{8} \\ & \left(\frac{0.5}{4} \times 2 \pi=\right) \frac{\pi}{4} \text { or } 0.79(\mathrm{rad}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Allow ECF from (a)(ii) Note 0.785
		(iv)	$\begin{aligned} & 0.45^{2} \text { or } 0.15^{2} \text { or } 0.2025 \text { or } 0.0225 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow ECF from (a)(i) Allow one significant figure
	(b)		Level 3 (5-6 marks) Clear procedure, measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some procedure, some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited procedure, limited measurements and limited analysis There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	$\begin{gathered} \text { B1 x } \\ 6 \end{gathered}$	Indicative scientific points may include: Procedure - labelled diagram - two loudspeakers OR loudspeaker and double slit - signal generator connected to loudspeaker(s) - microphone and oscilloscope/sound sensor - microphone and oscilloscope/sound sensor moved between loudspeakers - safety precaution (ear defenders) - method to avoid reflections of sound - change frequency and repeat measurements for x - $D \gg a$ Measurements - frequency determined from oscilloscope/ reading from signal generator - additional detail from use of oscilloscope e.g. timebase to determine period and $f=1 / T$ - use of rule(r) to measure distances a, D and x - measures over several maxima/minima Analysis - rearrangement of equation for v or into $y=m x$ - plot a graph of x against $1 / f$ or equivalent - straight line through origin confirms relationship - gradient = vD / a - $v=\frac{a \times \text { gradient }}{D}$.
			Total	12	

Question			Answer	Marks	Guidance
6	(a)	(i)	Threshold frequency is the minimum frequency (of the incident EM waves/photon) to detach / emit / remove / release an electron (from the surface of the silver)	B1	Allow electrons Allow photoelectron / photoelectrons
		(ii)	$1.1(0) \times 10^{15}(\mathrm{~Hz})$	B1	
		(iii)	$\begin{aligned} & 6.63 \times 10^{-34} \times 1.1 \times 10^{15} \text { or } 7.293 \times 10^{-19} \\ & 4.6(\mathrm{eV}) \end{aligned}$	C1 A1	Allow substitution of point from graph into Einstein's equation Allow use of gradient as the Planck constant Note 4.558... eV
	(b)		Any four from: - electrons may be diffracted by graphite/carbon/atoms/crystal lattice - to produce rings / circular interference fringes - diffraction of electrons occurs when the wavelength is comparable / similar to the gap size - changes in the electron's speed/energy change the size of the ring / interference fringe spacing - electrons have a (de Broglie) wavelength given by $\lambda=h / p$ - reason for the rings as opposed to linear pattern, e.g. graphite atoms are irregularly arranged.	B1x 4	
			Total	8	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Cambridge
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

