GCE

Physics A

H156/01: Breadth in physics
Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Here are the subject specific instructions for this question paper.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow an answer to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

Annotations available in RM Assessor

	Annotation	Meaning
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent at which a mark has been awarded (one tick per mark awarded). ECF if there are no further errors.
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	Level 2

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
Reject	alternative and acceptable answers for the same marking point
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument forward
ORA	

SECTION A

Question	Answer	Marks	
1	B	1	
2	A	1	
3	B	1	
4	A	1	
5	D	1	
6	C	1	
7	C	1	
8	C	1	
9	D	1	
10	B	1	
11	B	1	
12	A	1	
13	D	1	
14	D	1	
15	C	1	
16	A	1	
17	A	1	
18	B	1	
19	A	1	
20	C	1	
		20	

SECTION B

General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance

Question			Answer	Marks	Guidance
21	(a)		Resultant / net / total moment $=0$	B1	Allow sum of $/ \Sigma$ moments $=0$ Allow 'total torque = 0' Allow clockwise moment = anticlockwise moment
\square	(b)	(i)	Earth	B1	Allow planet / ground
		(ii)	The forces are not of the same type / The forces act on the same object	B1	Allow The forces do not act on different objects
	(c)	(i)	$\begin{aligned} & 87.4 \cos 50^{\circ} \text { or } 68.0 \sin 10^{\circ} \\ & F=68.0(\mathrm{~N}) \end{aligned}$	C1 A1	Allow $87.4 \sin 40^{\circ}$ or $68.0 \cos 80^{\circ}$ Allow cosine and sine rules being used, e.g. $\begin{aligned} & F^{2}=68.0^{2}+87.4^{2}-2 \times 68.0 \times 87.4 \times \cos 50^{\circ} \text { or } \\ & F=87.4 \times \sin 50^{\circ} / \sin 80^{\circ} \text { or } F=68.0 \times \sin 50^{\circ} / \sin 50^{\circ} \end{aligned}$ Allow 2 SF answer here
		(ii)	$\begin{aligned} & 68=m \times 9.81 \\ & m=6.9(\mathrm{~kg}) \end{aligned}$	C1 A1	Possible ECF from (c)(i) Allow $68=m g$ Note answer to 3 SF is $6.93(\mathrm{~kg})$ Allow $g=9.8$; this gives 6.94 (kg) Not $g=10$; this gives $6.8(\mathrm{~kg})$. Only the first C1 mark can be scored
		(iii)	$E=\frac{\text { stress }}{\text { strain }} \quad$ (Any subject) (Tension and E increase by the same factor of 1.29) ratio $=1.0$	C1 A1	Allow $E=\frac{\sigma}{\varepsilon}$ or $E=\frac{F L}{A x} \quad$ (Any subject) Allow 1 SF answer Allow 1:1
			Total	9	

\begin{tabular}{|c|c|c|c|}
\hline Quest \& Answer \& Marks \& Guidance \\
\hline 22 (a) \& \begin{tabular}{l}
velocity = gradient or velocity \(=\) rate of change of displacement \\
Any three from: \\
- speed / (magnitude of) velocity increases (until \(0.50 \mathrm{~s} /\) hits grounds) \\
- speed / (magnitude of) velocity decreases after 0.50 (s) / hitting ground \\
- direction (of velocity / motion) changes at / after 0.50 (s) / hitting ground \\
- speed / (magnitude of) velocity after impact is smaller than the speed / (magnitude of) velocity before the impact
\end{tabular} \& B1
B1×3 \& \begin{tabular}{l}
Ignore any statements about the motion before 0.2 s \\
Note this must be clear statement - not implied \\
Allow accelerates \\
Allow decelerates \\
Allow after hitting ground / 0.50 (s) the ball travels up / bounces (back / up) or change in direction (of velocity / motion) indicated by change in sign
\end{tabular} \\
\hline (b) \& \[
\begin{aligned}
\& (s=) 1.23(\mathrm{~m}) \quad \text { or } \quad(t=) 0.50(\mathrm{~s}) \\
\& v^{2}=2 \times 9.81 \times 1.23 \\
\& \text { or } 1.23=0.50 \times \frac{v}{2} \\
\& \text { or } 1.23=v \times 0.50-1 / 2 \times 9.81 \times 0.50^{2} \\
\& \text { or } v=9.81 \times 0.50 \\
\& \text { or } 1.23=1 / 2 \times 9.81 \times t^{2} ; t=0.50(\mathrm{~s}) \text { and } v=9.81 \times 0.50 \\
\& v=4.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \& C1
C1

A0 \& | Note there are no marks for gradient calculations here |
| :--- |
| Allow s between $1.22(\mathrm{~m})$ and $1.26(\mathrm{~m})$ |
| Allow t between 0.495 (s) and 0.505 (s) |
| Substitution into $v^{2}=u^{2}+2$ as with $u=0$ |
| Substitution into $s=\frac{(v+u)}{2} \times t$ with $u=0$ |
| Substitution into $s=v t-1 / 2 a t^{2}$ |
| Substitution into $v=u+a t$ with $u=0$ |
| Substitution into $s=u t+1 / 2 a t^{2}$ and $v=u+a t$ with $u=0$ |
| Allow $g=9.8$ |
| Not $g=10$, unless already penalised in 21(c)(ii) |

\hline
\end{tabular}

(c)	Correct tangent at $t=0.50 \mathrm{~s}$ with positive gradient Attempt at calculating the gradient of a tangent Gradient calculated in the range 3.20 to $3.80\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1 M1 A1	Note must evidence for Δs and Δt values either here or on Fig. 22 Allow this M1 mark for tangent not drawn at $t=0.50 \mathrm{~s}$ Note this mark can only be scored if the tangent is drawn at $t=0.50 \mathrm{~s}$ and the calculated value falls in this range
(d)	$\begin{aligned} & (\Delta v=) 4.9+3.5 \text { or }(\Delta v=) 8.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { force }=\frac{8.4 \times 0.056}{1.8 \times 10^{-3}} \\ & \text { force }=260(\mathrm{~N}) \end{aligned}$	C1 A1	Possible ECF from (c) Allow $(\Delta p=)(4.9+3.5) \times 0.056$ or $(\Delta p=) 0.47\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow 1 mark for $44(\mathrm{~N}) ; \Delta v=4.9-3.5$ used Ignore sign
	Total	11	

Question			Answer	Marks	Guidance
23	(a)	(i)	$\begin{aligned} & \left(R_{\mathrm{B}}=\right) 9.5 \times 0.40 \text { or } 3.8(\Omega) \\ & \text { (parallel resistance }=\text {) }\left[3.8^{-1}+1.8^{-1}\right]^{-1} \text { or } 1.22 \ldots(\Omega) \\ & \text { (total resistance }=\text {) } 1.22 . .+0.62 \text { or } 1.84(\Omega) \\ & I=\frac{1.4}{1.22 \ldots+0.62} \\ & I=0.76(\mathrm{~A}) \end{aligned}$	C1 C1 C1 A1	Possible ECF from R_{B} Possible ECF from parallel resistance Possible ECF from total resistance Allow 3 marks for $0.66 \mathrm{~A} ; R_{\mathrm{B}}=9.5 \Omega$ used
		(ii)	$\begin{aligned} & P=I V \text { or } P=I^{2} R \text { or } P=\frac{V^{2}}{R} \\ & \left(P_{\text {int }}=\right) 0.76^{2} \times 0.62 ;\left(P_{\text {total }}=\right) 1.4 \times 0.76 ; \text { ratio }=\frac{0.76^{2} \times 0.62}{1.4 \times 0.76} \\ & \text { ratio }=0.34 \end{aligned}$	C1 A1	Possible ECF from (a)(i) Note there are many other correct methods Allow 0.34:1 Not an answer expressed as a fraction, e.g 31/92
	(b)		Any three from: - Fig. 23.3 - p.d. split equally / (p.d. across each =) $3.0(\mathrm{~V})$ - Fig. 23.3 - current $=0.36(\mathrm{~A})$ (from the graph) - Fig. 23.4 - p.d. $=6.0(\mathrm{~V})$ (across each or combination) - Fig. 23.4 - current $(=2 \times 0.50)=1.0(0)(\mathrm{A})$ $0.36 \times 3(=1.08)$ is about $1.0(\mathrm{~A})$	M1×3 A1	Note that each of the M1 mark can be implied in a calculation Note 8.3.. (Ω) will score the 3.0 V and the 0.36 A marks Note $12(\Omega)$ will score the 6.0 V mark Note this mark is for showing that I_{P} is about 3 times I_{s}
			Total	10	

Question			Answer	Marks	Guidance
24	(a)		Clear indication that angles of incidence and refraction are being measured relative to the normals refractive index $=\sin i / \sin r$ Any one from: - Measure angle(s) using a protractor - Plot sini against $\sin r$ graph or average $\sin i / s i n r$ values - Use narrow beam of light (for ray box) / draw thin pencil lines - Conduct experiment in a dark room	B1 B1 B1	Note this can be scored from a clear diagram. The angles must have sensible labels, e.g. $i, r, \theta_{1}, \theta_{2}$, etc Ignore angle of refraction > angle of incidence Allow n for refractive index Allow $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$, as long as all labels have been correctly identified and the refractive index for air/vacuum is taken as 1 Not $n=c / v$
	(b)	(i)	Straight-line of best fit drawn gradient $=170(\mathrm{~Hz} \mathrm{~m})$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow value in range 160.0 to 180.0
		(ii)	$v=f \lambda$ or $\lambda=2 L$ or $v=2 f L$ (Any subject) Clear steps leading to gradient $=\frac{v}{2}$ using $y=m x$	C1 A1	Allow separation between adjacent nodes $=\frac{\lambda}{2}$ Allow gradient $=f \div(\lambda / 2)^{-1}=f \lambda / 2=v / 2$
		(iii)	$\begin{aligned} & v=2 \times 170 \\ & v=340\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	B1	Possible ECF from (b)(i)

	(iv)	Decrease frequency / f (ORA) L / λ increases (so, smaller \% uncertainty) (ORA) or Measure distance between several nodes / antinodes Distance measured is larger (so, smaller \% uncertainty) or Use a small(er) microphone Easier to locate position of node / antinode (so, smaller \% uncertainty)	M1 A1 M1 A1 M1 A1	Allow other sensible suggestions Allow increase wavelength / λ (ORA) Allow L increases (so, smaller \% uncertainty) (ORA) Allow reduce reflection of sound (other than from the wall)
		Total	10	

Question			Answer	Marks	Guidance
25	(a)		Diffraction (of electrons by matter)	B1	
	(b)	(i)	$\begin{aligned} & (K E=) 210 \times 1.60 \times 10^{-19}(\mathrm{~J}) \text { or } 3.36 \times 10^{-17}(\mathrm{~J}) \\ & 1 / 2 \times 9.11 \times 10^{-31} \times v^{2}=3.36 \times 10^{-17} \\ & v=8.6 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note using $K E=210(\mathrm{~J})$ is wrong physics XP Note the answer must be to more than 1 SF
		(ii)	$\begin{aligned} & \lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 8.6 \times 10^{6}} \\ & \lambda=8.5 \times 10^{-11}(\mathrm{~m}) \end{aligned}$	C1 A1	Possible ECF from (i) Allow 2 marks for $8.1 \times 10^{-11}(\mathrm{~m}) ; v=9 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ used
	(c)		One photon interacts with one electron energy of photon $=($ maximum $) K E$ (of electron) + work function (of the metal) Work function is the minimum energy (required) to remove electron (from the surface of a metal) Electron removed / photoelectric effect when energy of photon is greater than / equal to work function (of the metal)	B1 B1 B1 B1	Ignore references to frequencies and threshold frequency Allow photoelectron instead of electron throughout Note an equation is required Allow $h f=K E_{(\max)}+\phi$, with *hf $=$ energy of photon, $K E_{(\max)}$ = (maximum) $K E$ (of electron) and $\phi=$ work function *Not $h f=$ Planck constant \times frequency (since there is no reference to 'energy of photon') Allow energy of photons $=\ldots \ldots \ldots$. as BOD Allow ϕ instead of work function for this mark Allow 'work done' instead of 'energy' Allow ... electrons as BOD Allow electron removed / photoelectric effect when $h f>\phi$ or electron removed / photoelectric effect when $h f=\phi$ or electron not removed / no photoelectric effect when hf < ϕ Allow electrons and photons as BOD
			Total	10	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Cambridge
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

