AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

A-level PHYSICS

Paper 3

Section B Medical physics

Monday 3 June 2019 Afternoon

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Section B

Answer all questions in this section.

0	1	Car drivers must be able to

- read a speedometer from a distance of 50 cm
- read a number plate from a distance of 20.5 m .

A driver has an unaided far point of 55 cm and an unaided near point of 25 cm .

0	1	1

Tick (\checkmark) one box.

Astigmatism	
Hypermetropia	
Myopia	

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{2}$ Figure $\mathbf{1}$ shows the position of a number plate at a distance of 20.5 m in front of the |
| :--- | :--- | :--- | driver's unaided eye.

Figure 2 shows the same situation and the position of a corrective lens.
Complete both ray diagrams to show how and where the image of the number plate is formed in each case.
Add a suitable lens to Figure 2.

Figure 1
Without corrective lens

Figure 2
With corrective lens

Question 1 continues on the next page

$\mathbf{0}$	$\mathbf{1}$.3
$\mathbf{3}$	An optician considers the use of three different lenses, \mathbf{A}, \mathbf{B} and \mathbf{C}, for use by the	

Power of $\mathbf{A}=-2.18 \mathrm{D}$
Power of $\mathbf{B}=-1.77 \mathrm{D}$
Power of $\mathbf{C}=+1.95 \mathrm{D}$
Deduce which lens is suitable.
Support your answer with calculations.

| $\mathbf{0}$ | $\mathbf{2}$ Three customers, \mathbf{P}, \mathbf{Q} and \mathbf{R}, are sitting in a café listening to music from a |
| :--- | :--- | loudspeaker.

Customer \mathbf{P} is 11 m from the loudspeaker. At the position of customer \mathbf{P}, the sound intensity is $3.4 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2}$.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$

Calculate the sound intensity at the new position of customer \mathbf{P}. Assume that the loudspeaker is a point source.
 position of customer \mathbf{R}.

Calculate the ratio $\frac{\text { sound intensity at the position of } \mathbf{Q}}{\text { sound intensity at the position of } \mathbf{R}}$.
\qquad

Discuss whether the use of intensity level or intensity is more appropriate to compare the perceived loudness.
\qquad
\qquad
\qquad
\qquad

Customer \mathbf{P} is 80 years old and has hearing loss due to her age.
Customer \mathbf{Q} is 35 years old and has hearing loss due to working in an extremely noisy environment.
Customer \mathbf{R} is 35 years old and has no hearing loss.
The hearing defects of \mathbf{P} and \mathbf{Q} affect their perception of the music being played.
Describe how their perceptions are different from that of \mathbf{R}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | Figure 3 shows the X -ray spectrum produced in a medical X -ray machine at a |
| :--- | :--- | :--- | particular anode potential difference (pd).

Figure 3

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	In an X-ray tube, electrons collide with a tungsten target.

Explain how the continuous spectrum and the characteristic spectra are produced by these electron collisions.

Continuous spectrum \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Characteristic spectra \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sketch on Figure 4 the X -ray spectrum produced when the anode pd is increased.
[2 marks]
Figure 4

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ In the medical X-ray machine, the X-rays produced with the initial anode pd are now |
| :--- | :--- | :--- | :--- | passed through an aluminium filter.

The dashed line on Figure 5 shows the X -ray spectrum for the initial anode pd.
Sketch on Figure 5 the X -ray spectrum of the X-rays that emerge from the filter.
[1 mark]
Figure 5

$\mathbf{0}$	$\mathbf{4}$	Ultrasound is commonly used in medical procedures.

0	$\mathbf{4}$	-1 An ultrasound A-scan is used to find the length l of an eye as shown in Figure 6.

Figure 7 shows the simplified A-scan for the eye. A short pulse of ultrasound is transmitted at time $t=0$

The average speed of ultrasound in the eye $=1560 \mathrm{~m} \mathrm{~s}^{-1}$.
Figure 6

Figure 7

Calculate l.

| 0 | 4 | .2 |
| :--- | :--- | :--- | Amniocentesis is a procedure where a tube is inserted into a uterus to remove some cells and fluid from around a foetus. For the procedure to be carried out safely the positions of the needle, foetus and placenta must be determined accurately.

Discuss whether an A-scan or a B-scan should be used for amniocentesis.
In your answer, you should:

- outline the differences between an A-scan and a B-scan
- describe the advantages and disadvantages of each type of scan
- explain why your chosen scan should be used for this procedure.
\qquad
Question 4 continues on the next page
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad
	\qquad
	\square

For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ

Copyright © 2019 AQA and its licensors. All rights reserved.

