Sumame	Other names

Pearson Edexcel

 Level 3 GCE

Mathematics

Advanced
Paper 1: Pure Mathematics 1

Sample Assessment Material for first teaching September 2017
Time: $\mathbf{2}$ hours
Paper Reference
9MA0/01

You must have:
Mathematical Formulae and Statistical Tables, calculator

Total Marks
dides may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 15 questions in this question paper. The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer cross it out and put your new answer and any working out underneath.

Answer ALL questions. Write your answers in the spaces provided.

1. The curve C has equation

$$
y=3 x^{4}-8 x^{3}-3
$$

(a) Find (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{dx}}$
(b) Verify that C has a stationary point when $x=2$
(c) Determine the nature of this stationary point, giving a reason for your answer.
(a) (i)

$$
\begin{aligned}
\frac{d y}{d x} & =(3 \cdot 4) x^{3}-(8 \cdot 3) x^{2}-(3 \cdot 0) \\
& =12 x^{3}-24 x^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =(12 \cdot 3) x^{2}-(24 \cdot 2) x \\
& =36 x^{2}-48 x
\end{aligned}
$$

(b) When $x=2, \quad \frac{d y}{d x}=12(2)^{3}-24(2)^{2}$

$$
\begin{aligned}
& =96-96 \\
& =0
\end{aligned}
$$

$\frac{d y}{d x}=0 \quad \Rightarrow \quad x=2$ is a stationary point.
(c) When $x=2, \quad \frac{d^{2} y}{d x^{2}}=36(2)^{2}-48(2)$

$$
\begin{aligned}
& =144-96 \\
& =48>0
\end{aligned}
$$

$\frac{d^{2} y}{d x^{2}}>0 \Rightarrow x=2$ is a minimum point.
2.

Figure 1
The shape $A B C D O A$, as shown in Figure 1, consists of a sector $C O D$ of a circle centre O joined to a sector $A O B$ of a different circle, also centre O.

Given that arc length $C D=3 \mathrm{~cm}, \angle C O D=0.4$ radians and $A O D$ is a straight line of length 12 cm ,
(a) find the length of $O D$,
(b) find the area of the shaded sector $A O B$.
(a)
$C D=r \theta$.

$$
\begin{aligned}
& 0.4 r=3 \mathrm{~cm} \\
& \Rightarrow r=7.5 \mathrm{~cm}
\end{aligned}
$$

(b) Radius of $A O B$ is $12-7.5=4.5 \mathrm{~cm}$.

Area of $A O B=\frac{1}{2} r^{2} \theta$, where $r=4-5 \mathrm{~cm}, \theta=\pi-0.4$

$$
\begin{aligned}
& =\frac{1}{2} \cdot(4.5)^{2} \cdot(\pi-0.4) \\
& =27.76 \mathrm{~cm}^{2} \\
& \approx 27.8 \mathrm{~cm}^{2}
\end{aligned}
$$

3. A circle C has equation

$$
x^{2}+y^{2}-4 x+10 y=k
$$

where k is a constant.
(a) Find the coordinates of the centre of C.
(b) State the range of possible values for k.
(a) $x^{2}+y^{2}-4 x+10 y=k$

$$
\Rightarrow\left(x^{2}-2\right)^{2}-4+(y+5)^{2}-25=k
$$

Centre is $(2,-5)$.
(b) $\begin{array}{r}k+25+4>0 \quad \text { is an essen } \\ \text { as } \sqrt{k+25+4} \text { is the radius. }\end{array}$

Therefore, we have $k>-29$.
(Total for Question 3 is $\mathbf{4}$ marks)
4. Given that a is a positive constant and

$$
\int_{a}^{2 a} \frac{t+1}{t} \mathrm{~d} t=\ln 7
$$

show that $a=\ln k$, where k is a constant to be found.

$$
\begin{aligned}
& \int_{a}^{2 a} \frac{t+1}{t} d t=\int_{a}^{2 a}\left(1+\frac{1}{t}\right) d t \\
& =[t+\ln t]_{a}^{2 a}=2 a+\ln 2 a-a-\ln a \\
& \\
& =a+\ln 2 .
\end{aligned}
$$

$$
\begin{aligned}
& a+\ln 2=\ln 7 \\
& \Rightarrow a=\ln 7-\ln 2=\ln \frac{7}{2}
\end{aligned}
$$

So, $k=\frac{7}{2}$.
(Total for Question 4 is 4 marks)
5. A curve C has parametric equations

$$
x=2 t-1, \quad y=4 t-7+\frac{3}{t}, \quad t \neq 0
$$

Show that the Cartesian equation of the curve C can be written in the form

$$
y=\frac{2 x^{2}+a x+b}{x+1}, \quad x \neq-1
$$

where a and b are integers to be found.

$$
\begin{aligned}
& \text { Tx } \quad x=2 t-1 \\
& \Rightarrow t=\frac{x+1}{2} \\
& \Rightarrow y=4\left(\frac{x+1}{2}\right)-7+\frac{(3 \cdot 2)}{(x+1)} \\
& =2(x+1)-7+\frac{6}{x+1} \\
& =2 x-5+\frac{6}{x+1} \\
& =\frac{(2 x-5)(x+1)+6}{(x+1)} \\
& =\frac{2 x^{2}-3 x-5+6}{x+1} \\
& =\frac{2 x^{2}-3 x+1}{x+1} \\
& \Rightarrow a=-3, b=1 .
\end{aligned}
$$

(Total for Question 5 is $\mathbf{3}$ marks)
6. A company plans to extract oil from an oil field.

The daily volume of oil V, measured in barrels that the company will extract from this oil field depends upon the time, t years, after the start of drilling.

The company decides to use a model to estimate the daily volume of oil that will be extracted. The model includes the following assumptions:

- The initial daily volume of oil extracted from the oil field will be 16000 barrels.
- The daily volume of oil that will be extracted exactly 4 years after the start of drilling will be 9000 barrels.
- The daily volume of oil extracted will decrease over time.

The diagram below shows the graphs of two possible models.

Model A

Model B
(a) (i) Use model A to estimate the daily volume of oil that will be extracted exactly 3 years after the start of drilling.
(ii) Write down a limitation of using model A.
(b) (i) Using an exponential model and the information given in the question, find a possible equation for model B.
(ii) Using your answer to (b)(i) estimate the daily volume of oil that will be extracted exactly 3 years after the start of drilling.
(a) $(1) \quad 10750$
(ii) As t increases, V can be seen to become negative. This is impossible.

Question 6 continued
(b) (i) Let $V=A e^{k t}$

When $t=0, v=16000$

$$
t=4, \quad v=9000
$$

$$
\Rightarrow 16000=A e^{k 0}
$$

$$
9000=A e^{4 / 2}
$$

$$
\begin{aligned}
\Rightarrow A & =16000 \\
\Rightarrow & e^{4 k}=\frac{9}{16} \\
& \Rightarrow 4 k=\ln \frac{9}{16} \\
& \Rightarrow k=1 / 4 \ln \frac{9}{16} \\
V & =16000 e^{\frac{5}{4} \ln / 16}
\end{aligned}
$$

(ii) Let $t=3$.

$$
\begin{aligned}
V=16000 e^{3 / 4 \ln 9 / 16} & =10392.3 \\
& \approx 10400 .
\end{aligned}
$$

7.

Figure 2
Figure 2 shows a sketch of a triangle $A B C$.
Given $\overrightarrow{A B}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and $\overrightarrow{B C}=\mathbf{i}-9 \mathbf{j}+3 \mathbf{k}$,
show that $\angle B A C=105.9^{\circ}$ to one decimal place.

$$
\begin{aligned}
& \overrightarrow{A B}=2 \underline{\imath}+3 \underline{\jmath}+\underline{k}, \overrightarrow{B C}=\hat{i}-9 \underline{j}+3 \underline{k} \\
\Rightarrow & \overrightarrow{A C}=3 \underline{i}-6 \underline{\jmath}+4 \underline{k}
\end{aligned}
$$

Use 3D Pythagoras:

$$
\begin{aligned}
& |A B|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{14} \\
& |B C|=\sqrt{1^{2}+(-9)^{2}+3^{2}}=\sqrt{91} \\
& |A C|=\sqrt{3^{2}+(-6)^{2}+4^{2}}=\sqrt{61} \\
& \cos B A C=\frac{|A B|^{2}+|A C|^{2}-|B C|^{2}}{2|A B||A C|} \\
& \Rightarrow \cos B A C=\frac{14+61-91}{2 \sqrt{14} \sqrt{61}}=105.9^{\circ}
\end{aligned}
$$

8.

$$
f(x)=\ln (2 x-5)+2 x^{2}-30, \quad x>2.5
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[3.5,4]$

A student takes 4 as the first approximation to α.
Given $f(4)=3.099$ and $f^{\prime}(4)=16.67$ to 4 significant figures,
(b) apply the Newton-Raphson procedure once to obtain a second approximation for α, giving your answer to 3 significant figures.
(c) Show that α is the only root of $\mathrm{f}(x)=0$
(a)

$$
\begin{aligned}
& f(3.5)=\ln 2+2(3.5)^{2}-30=-4.807 \\
& f(4)=\ln 3+2(4)^{2}-30=+3.099
\end{aligned}
$$

The function is continuous, so the change in sign between $f(3.5)$ and $f(4)$ indicates that a root, α, lies between 3.5 and 4 .
(b) $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$.

$$
x_{1}=4-\frac{3.099}{16.67}=3.81
$$

(c) Allow $a(x)=\ln (2 x-5)$ and $g(x)=30-2 x^{2}$, such that

$$
f(x)=a(x)-b(x) .
$$

For a root, $f(x)=0$, we hove

$$
a(x)=b(x)
$$

Question 8 continued

The two functions $a(x)$ and $b(x)$ meet once only, so $f(x)=0$ only has ane root.
\qquad
(Total for Question 8 is $\mathbf{6}$ marks)
9. (a) Prove that

$$
\begin{equation*}
\tan \theta+\cot \theta \equiv 2 \operatorname{cosec} 2 \theta, \quad \theta \neq \frac{n \pi}{2}, n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

(b) Hence explain why the equation

$$
\tan \theta+\cot \theta=1
$$

does not have any real solutions.
(a) $\tan \theta+\cot \theta \equiv \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta}{\sin \theta \cos \theta}+\frac{\cos ^{2} \theta}{\sin \theta \cos \theta} \\
& =\frac{1}{\sin \theta \cos \theta} \\
& =\frac{1}{1 / 2 \sin 2 \theta} \\
& =2 \operatorname{cosec} 2 \theta
\end{aligned}
$$

(b) $\quad \tan \theta+\cot \theta=1 \Rightarrow 2 \operatorname{cosec} 2 \theta=1$

$$
\Rightarrow \quad \sin 2 \theta=2
$$

$-1 \leq \sin 2 \theta \leq 1$, so there are no solutions for $\sin 2 \theta=2$.
(Total for Question 9 is $\mathbf{5}$ marks)
10. Given that θ is measured in radians, prove, from first principles, that the derivative of $\sin \theta$ is $\cos \theta$
You may assume the formula for $\sin (A \pm B)$ and that as $h \rightarrow 0, \frac{\sin h}{h} \rightarrow 1$ and $\frac{\cos h-1}{h} \rightarrow 0$

$$
\frac{\sin (\theta+h)-\sin \theta}{(\theta+h)-\theta}
$$

$$
\sin (\theta+h)=\sin \theta \cos h+\cos \theta \sin h
$$

$$
\frac{\sin \theta \cosh +\cos \theta \sinh -\sin \theta}{h}
$$

$$
=\frac{\sin h}{h} \cos \theta+\left(\frac{\cos h}{h}-\frac{1}{h}\right) \sin \theta
$$

As $h \rightarrow 0, \frac{\sin h}{h} \rightarrow 1, \frac{\cosh -1}{h} \rightarrow 0$
As $h \rightarrow 0, \frac{\sin (\theta+h)-\sin \theta}{(\theta+h)-\theta} \rightarrow \cos \theta$.

Therefore, we have $\frac{d(\sin \theta)}{d \theta}=\cos \theta$.
11. An archer shoots an arrow.

The height, H metres, of the arrow above the ground is modelled by the formula

$$
H=1.8+0.4 d-0.002 d^{2}, \quad d \geqslant 0
$$

where d is the horizontal distance of the arrow from the archer, measured in metres.
Given that the arrow travels in a vertical plane until it hits the ground,
(a) find the horizontal distance travelled by the arrow, as given by this model.
(b) With reference to the model, interpret the significance of the constant 1.8 in the formula.
(c) Write $1.8+0.4 d-0.002 d^{2}$ in the form

$$
A-B(d-C)^{2}
$$

where A, B and C are constants to be found.

It is decided that the model should be adapted for a different archer.
The adapted formula for this archer is

$$
H=2.1+0.4 d-0.002 d^{2}, \quad d \geqslant 0
$$

Hence or otherwise, find, for the adapted model
(d) (i) the maximum height of the arrow above the ground.
(ii) the horizontal distance, from the archer, of the arrow when it is at its maximum height.
(a) Set $H=0$.

$$
\begin{aligned}
&-0.002 d^{2}+0.4 d+1.8=0 \\
& \Rightarrow d=\frac{-0.4 \pm \sqrt{0.16-(4 \cdot-0.002 \cdot 1.8)}}{2 \times-0.002} \\
&=\frac{-0.4 \pm \sqrt{0.16+0.0144}}{-0.004}=204 \mathrm{~m}
\end{aligned}
$$

(b) Initial height of the arrow.

Question 11 continued

$$
\begin{aligned}
1.8 & +0.4 d-0.002 d^{2} \\
& =-0.002\left(d^{2}-200 d\right)+1.8 \\
& =-0.002\left((d-100)^{2}-10000\right)+1.8 \\
& =21.8-0.002(d-100)^{2}
\end{aligned}
$$

(d) (i) $21.8 m+0.3 m=22.1 m$
(ii) 100 m , the distance at which the
maximum height is achewed doer not
change.
(ii) 100 m , the distance at which the
maximum height is achewed doer not
change.
(ii) 100 m , the distance at which the
maximum height is achewed doer not
change.
(c)
\qquad
\qquad
\qquad
12. In a controlled experiment, the number of microbes, N, present in a culture T days after the start of the experiment were counted.
N and T are expected to satisfy a relationship of the form

$$
N=a T^{b}, \quad \text { where } a \text { and } b \text { are constants }
$$

(a) Show that this relationship can be expressed in the form

$$
\log _{10} N=m \log _{10} T+c
$$

giving m and c in terms of the constants a and/or b.

Figure 3
Figure 3 shows the line of best fit for values of $\log _{10} N$ plotted against values of $\log _{10} T$
(b) Use the information provided to estimate the number of microbes present in the culture 3 days after the start of the experiment.
(c) Explain why the information provided could not reliably be used to estimate the day when the number of microbes in the culture first exceeds 1000000 .
(d) With reference to the model, interpret the value of the constant a.

Question 12 continued
(a)

$$
\begin{aligned}
& N=a T^{b} \\
& \Rightarrow \log _{10} N=\log _{10}\left(a T^{b}\right) \\
&=\log _{10} a+b \log _{10} T
\end{aligned}
$$

so $m=b, \quad c=\log _{10} a$
(b) $a \approx 10^{1.85} b \approx 2.20, T=3$.

$$
\Rightarrow \quad N \approx 800
$$

(c) We cannot extrapolate the graph and assume the model holds.
(d) The number of microbes after 1 day.
13. The curve C has parametric equations

$$
x=2 \cos t, \quad y=\sqrt{3} \cos 2 t, \quad 0 \leqslant t \leqslant \pi
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The point P lies on C where $t=\frac{2 \pi}{3}$
The line l is the normal to C at P.
(b) Show that an equation for l is

$$
2 x-2 \sqrt{3} y-1=0
$$

(a) $\frac{d y}{d t}=-2 \sqrt{3} \sin 2 t, \quad \frac{d x}{d t}=-2 \sin t$

$$
\Rightarrow \frac{d y}{d x}=\frac{\sqrt{3} \sin 2 t}{\sin t}
$$

(b) $\quad t=\frac{2 \pi}{3} \quad \Rightarrow \frac{d y}{d x}=-\sqrt{3}$

Gradient of normal $=\frac{1}{\sqrt{3}}$
At $t=\frac{2 \pi}{3}$, we have point $P:\left(-1,-\frac{\sqrt{3}}{2}\right)$

Then we have l represented by

$$
\begin{aligned}
& y+\frac{\sqrt{3}}{2}=\frac{1}{\sqrt{3}}(x+1) \\
\Rightarrow & y+\frac{\sqrt{3}}{2}=\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}}
\end{aligned}
$$

Question 13 continued

$$
\begin{aligned}
& \Rightarrow 2 \sqrt{3} y+3=2 x+2 \\
& \Rightarrow 2 x-2 \sqrt{3} y-1=0
\end{aligned}
$$

(c) $\quad x=2 \cos t, y=\sqrt{3} \cos 2 t$
into $\quad 2 x-2 \sqrt{3} y-1=0$.

$$
\begin{aligned}
& \quad 4 \cos t-6 \cos 2 t-1=0 \\
& \Rightarrow \quad 4 \cos t-6\left(2 \cos ^{2} t-1\right)-1=0 \\
& \Rightarrow \quad 12 \cos ^{2} t-4 \cos t-5=0 . \\
& \Rightarrow \quad \cos t=5 / 6,-\frac{1}{2} \\
& \Rightarrow \\
& \Rightarrow x=2 \cdot \frac{5}{6}=\frac{5}{3}, \quad y=\sqrt{3} \cdot \frac{7}{18} \\
& \Rightarrow
\end{aligned}
$$

14.

Figure 4
Figure 4 shows a sketch of part of the curve C with equation

$$
y=\frac{x^{2} \ln x}{3}-2 x+5, \quad x>0
$$

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the line with equation $x=1$, the x-axis and the line with equation $x=3$

The table below shows corresponding values of x and y with the values of y given to 4 decimal places as appropriate.

x	1	1.5	2	2.5	3
y	3	2.3041	1.9242	1.9089	2.2958

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of S, giving your answer to 3 decimal places.
(b) Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of S.
(c) Show that the exact area of S can be written in the form $\frac{a}{b}+\ln c$, where a, b and c are integers to be found.
(In part c, solutions based entirely on graphical or numerical methods are not acceptable.)
(a) $\quad h=0.5$

$$
\begin{aligned}
& \frac{0.5}{2}(3+2.2958+2(2.3041+1.9242+1.9089)) \\
& =4.393
\end{aligned}
$$

(b) Increase the number of strips used.

Question 14 continued
(C)

$$
\begin{aligned}
& \int_{1}^{3}\left(\frac{x^{2} \ln x}{3}-2 x+5\right) d x \\
= & {\left[\frac{x^{3}}{3} \ln x\right]_{1}^{3}-\int_{1}^{3} \frac{x^{2}}{3} d x-\int_{1}^{3}(2 x-5) d x } \\
= & {\left[\frac{x^{3} \ln x}{9}-\frac{x^{3}}{27}-x^{2}+5 x\right]_{1}^{3} }
\end{aligned}
$$

$$
=3 \ln 3-1-9+15+\frac{1}{27}+1-5
$$

$$
=\frac{28}{27}+\ln 27
$$

15.

Figure 5
Figure 5 shows a sketch of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=\frac{4 \sin 2 x}{\mathrm{e}^{\sqrt{2 x}-1}}, \quad 0 \leqslant x \leqslant \pi
$$

The curve has a maximum turning point at P and a minimum turning point at Q as shown in Figure 5.
(a) Show that the x coordinates of point P and point Q are solutions of the equation

$$
\tan 2 x=\sqrt{2}
$$

(b) Using your answer to part (a), find the x-coordinate of the minimum turning point on the curve with equation
(i) $y=\mathrm{f}(2 x)$.
(ii) $y=3-2 \mathrm{f}(x)$.
(a) Use quotient rule:

$$
\begin{aligned}
& a=4 \sin 2 x \\
& b=e^{\sqrt{2} x-1} \\
& a^{\prime}=8 \cos 2 x \\
& b^{\prime}=\sqrt{2} e^{\sqrt{2} x-1} \\
& \Rightarrow f^{\prime}(x)=\frac{8 \cos 2 x e^{\sqrt{2} x-1}-4 \sin 2 x \sqrt{2} e^{\sqrt{2} x-1}}{\left(e^{\sqrt{2} x-1}\right)^{2}} \\
& =8 \cos 2 x-4 \sqrt{2} \sin 2 x \\
& e^{\sqrt{2} x-1}
\end{aligned}
$$

Question 15 continued

$$
\tan (2 x)=\frac{\sin 2 x}{\cos 2 x}=\frac{8}{4 \sqrt{2}}=\sqrt{2}
$$

(b) (i) $\quad \tan 4 x=\sqrt{2}$

$$
\Rightarrow \quad x=1.02^{\circ}
$$

(ii) $\quad \tan 2 x=\sqrt{2}$

$$
\Rightarrow \quad x=0.478^{c}
$$

