| | | Candidate nur | mber | | | |-------|-------|---------------|-----------------|-----------------|-----------------| | MODEL | 5010 | J TJONS | | | | | | | tind y | 5 to 15 | Isni naviJ | | | | MODEL | MODEL SOL | MODEL SOLUTIONS | MODEL SOLUTIONS | MODEL SOLUTIONS | # AS **MATHEMATICS** Paper 2 Please note that question 17 uses the original Large Data Set "Family Food". This was replaced by the data set "Transport Stock Vehicle Database" in AS exams from June 2019. If you'd like to see the original data set, please contact maths@aqa.org.uk. Wednesday 23 May 2018 Morning Time allowed: 1 hour 30 minutes #### Materials - · You must have the AQA Formulae for A-level Mathematics booklet. - You should have a graphical or scientific calculator that meets the requirements of the specification. #### Instructions - Use black ink or black ball-point pen. Pencil should only be used for drawing. - Fill in the boxes at the top of this page. - · Answer all questions. - You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question. - . Show all necessary working; otherwise marks for method may be lost. - Do all rough work in this book. Cross through any work that you do not want to be marked. #### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 80. #### Advice - Unless stated otherwise, you may quote formulae, without proof, from the booklet. - You do not necessarily need to use all the space provided. | For Examiner's Use | | | | |--------------------|------|--|--| | Question | Mark | | | | 1 | | | | | 2 | | | | | 3 | | | | | 4 | | | | | 5 | | | | | 6 | | | | | 7 | | | | | 8 | | | | | 9 | | | | | 10 | | | | | 11 | | | | | 12 | | | | | 13 | | | | | 14 | | | | | 15 | | | | | 16 | | | | | 17 | | | | | 18 | | | | | 19 | | | | | TOTAL | | | | 7356/2 ## Section A Answer all questions in the spaces provided. 1 Given that $\frac{dy}{dx} = \frac{1}{6x^2}$ find y. Circle your answer. [1 mark] $$\frac{-1}{3x^3} + c \qquad \frac{1}{2x^3} + c \qquad \left(\frac{-1}{6x} + c\right) \qquad \frac{-1}{3x} + c$$ $$\frac{dy}{dx} = \frac{1}{6x^2}$$ $$\frac{dy}{dx} = \frac{1}{6}x^{-2}$$ $$y = \int \frac{1}{6}x^{-2} dx$$ $$y = -\frac{1}{6}x^{-1} + c$$ $$y = \frac{-1}{6x} + c$$ 2 Figure 1 shows y = f(x). Figure 1 Which figure below shows y = f(2x)? Tick one box. [1 mark] | Figure 2 | | |----------|----------| | Figure 3 | V | Figure 4 | 3 | Express | 98 | a | single | logarithm | |---|---------|----|----|---------|-------------| | | FVb1699 | as | cı | alligle | logantiiiii | $$2\log_a 6 - \log_a 3$$ [2 marks] | Z(oga6 - Loga3 = | (0,1) | |----------------------|--| | (oga(62)- (oga 3 = | /// | | Loga (36) - Loga 3 = | 1 | | (og 2 (36 ÷3) = | 133 (0.20 | | Loga (12) | с втаря поилу | | | THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO T | 8 onpgH . Solve the equation $\tan^2 2\theta - 3 = 0$ giving all the solutions for $0^{\circ} \le \theta \le 360^{\circ}$ [4 marks] $$\tan^2(20) - 3 = 0$$. $\tan^2(20) = 3$ $\tan(20) = \pm \sqrt{3}$ tre root -ve root ban (20) = - 5 20 = 120°, 300°, 480°, 66° | 5 | f'(x) = | $\left(2x-\frac{3}{x}\right)^2$ | and $f(3) = 2$ | |---|---------|---------------------------------|----------------| |---|---------|---------------------------------|----------------| Find f(x). [4 marks] | nam S | c = 5 | (8 | |-------|---|----| | | $C(x) = \frac{4x^3}{3} - 12x - \frac{9}{x} + 5$. | | | | 0 | | 0 5 Turn over ▶ - Points A (-7, -7), B (8, -1), C (4, 9) and D (-11, 3) are the vertices of a quadrilateral ABCD. - 6 (a) Prove that ABCD is a rectangle. [4 marks] Gradient $$AB = \frac{3-\alpha}{8-(-7)} = \frac{6}{15} = \frac{2}{5}$$ Gradient $DC = \frac{3-\alpha}{4(-4)} = \frac{-6}{-15} = \frac{2}{5}$ Gradient $BC = \frac{9-(-1)}{4-8} = \frac{10}{-4} = -\frac{5}{2}$ Gradient $DA = \frac{-7-3}{-7-(-1)} = \frac{-10}{4} = \frac{-5}{2}$ Gradient AB - Gradient DC and Gradient DA = Gradient AB So the foints form a parallelogram. Gradient AB x Gradient BC = $\frac{2}{5} \times \frac{5}{2} = -1$. So AB and BC are perpendicular to each Hence, ne have a rectangle. 6 (b) Find the area of ABCD. [2 marks] length $$(AB) = \sqrt{(8-(4))^2 + (-1-(-1))^2}$$ $$= \sqrt{15^2 + 6^2}$$ $$= \sqrt{225 + 36}$$ $$= \sqrt{261} = 3\sqrt{29}$$ $$(angth (BA) = \sqrt{(9-(-1))^2 + (4-8)^2}$$ $$= \sqrt{100^2 + 4^2}$$ $$= \sqrt{100} + 16$$ $$= \sqrt{116} = 2\sqrt{29}$$ Area = $3\sqrt{29} \times 2\sqrt{29} = 3\times 2\times 29 = 174$. 7 (a) Express $$2x^2 - 5x + k$$ in the form $a(x - b)^2 + c$ $$2x^{2}-5x+k=10 \text{ and lo another addition of the following of the following and th$$ $$a=2$$, $b=\frac{5}{4}$, $c=k-\frac{25}{8}$ 7 (b) Find the values of $$k$$ for which the curve $y=2x^2-5x+k$ does **not** intersect the line $y=3$ $$y = 2x^{2} - 5x + k$$ $y = 2(x - \frac{5}{4})^{2} + k - \frac{25}{8}$ $0 \text{ at } x = 0$. Need $$k - \frac{25}{8} > 3$$. $k > \frac{25}{8}$ $k > \frac{49}{8}$. - A circle of radius 6 passes through the points (0, 0) and (0, 10). - 8 (a) Sketch the two possible positions of the circle. [1 mark] | 8 (b) | Find the equations of the two circles. [3 marks] | |-------|---| | | Same distance grown (0,0) and (0,10) so | | | centre must lie on line y=5. | | | Pythogoras give \((5-0)^2 + (2-0)^2 = 6. | | | (5° +x° =6 | | | 25 B) + x' = 36 | | | $\chi^2 = (1.$ | | | $\chi = \pm \sqrt{u}$ | | | | Civiles ore: $(x-\sqrt{11})^2 + (y-5)^2 = 36$ $(x+\sqrt{11})^2 + (y-5)^2 = 36$. Turn over for the next question | 9 Letter Ut is given that $\cos 15^\circ = \frac{1}{2}\sqrt{2+\sqrt{3}}$ and $\sin 15^\circ = \frac{1}{2}$ | $\sqrt{2-\sqrt{3}}$ | |--|---------------------| |--|---------------------| Show that $\tan^2 15^\circ$ can be written in the form $a + b\sqrt{3}$, where a and b are integers. Fully justify your answer. [3 marks] $$ton 15 = \frac{\sin 15}{\cos 15}$$ $$ton 15 = \frac{\frac{1}{2}\sqrt{1+\sqrt{3}}}{\frac{1}{2-\sqrt{3}}}$$ $$ton 15 = \frac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}$$ $$ton 15 = \frac{2+\sqrt{3}}{2-\sqrt{3}}$$ $$ton 215 = \frac{2+\sqrt{3}}{2-\sqrt{3}}$$ $$ton 215 = \frac{(1+\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}$$ $$ton 215 = \frac{(1+\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}$$ $$ton 215 = \frac{4+4\sqrt{3}+3}{4-2\sqrt{3}+2\sqrt{3}-3}$$ $$ton 215 = \frac{7+4\sqrt{3}}{1}$$ Lurn over for the next question In the binomial expansion of $(1+x)^n$, where $n \ge 4$, the coefficient of x^4 is $1\frac{1}{2}$ times the sum of the coefficients of x^2 and x^3 Find the value of n. [5 marks] $$\frac{(2)}{(2)} = 1 \stackrel{?}{=} (2) + (2)$$ $$\frac{(2)}{(2)} + (2) + (2)$$ $$\frac{(2)}{(2)} = \frac{2}{2} (\frac{(2)}{(2)} + \frac{(2)}{(2)} +$$ Turn over for the next question Turn over ▶ 11 Rakti makes open-topped cylindrical planters out of thin sheets of galvanised steel. She bends a rectangle of steel to make an open cylinder and welds the joint. She then welds this cylinder to the circumference of a circular base. The planter must have a capacity of 8000 cm³ Welding is time consuming, so Rakti wants the total length of weld to be a minimum. Calculate the radius, r, and height, h, of a planter which requires the minimum total length of weld. Fully justify your answers, giving them to an appropriate degree of accuracy. [9 marks] | Weld = 2000 + h. | |--| | Volume: Tr2 L = 8000 | | h = 8000 | | Well = lor + 8000 | | Need dr = 0 for miremon. | | dweld = 20 - 16000 = 0. | | 20 = 16000
NC 3 | | r3= 16000 | | r 3 = 8000 | | $C = \left(\frac{\alpha_T}{8000}\right)^{\frac{1}{2}}$ | | r=9.32 cn. | | $h = \frac{8000}{\pi (\frac{8000}{5})^2}$ | | h= 29-3 cm | Do not write outside the box | | a weld | 48000 | | Trees in a forest may ce effected | |-------|--|--|--|--| | | hack it 's | 4 8000
014 | >0 | duays, | | 101 | Or other to to have | | | , , | | | 50 | moun | ing. | | | | | | | | | | | 7102 | craunal l | - she crasy in emit off of a marks | | | | | | | | S | realisticy the for | ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | G central | ed balcalla south to receive of F | | | | | | | | | | | 20 - 6 | | | | | | | | | | aceasm tehring a | An number of | tra conu | day to teach a triba Appriser a triba | | | | | A STATE OF THE PARTY PAR | On 1 January 2018 a cotal of cot | | | person refler p | | | | | | | av eris bris bris | E. CORETE | Show that the 90, to the nearest | | [3 ma | | | | | | _ | | | | | | | | | | | | _ | | 179 | | A ARCHITECTURE OF THE PROPERTY | | | | - Marin | | | | | | | | | | _ | | | | | | | | | | | | - | | | 710 | A Dayle May and a second | | | | | | and the processor of the control | | _ | | | | | | | California de la Carte de Cart | | 1 | land and a second a | | | | | | | | | | The second | | | | | | | | | | | | | | | | | | | L | and the second second second second | | | | | | | | | | | - | | | | | | | | | | | | _ | | | | | | | | | | | | _ | - V - V | | | | | _ | | | | | | | | | | | | | | | | | Trees in a forest may be affected by one of two types of fungal disease, but not by both. The number of trees affected by disease A, $n_{\rm A}$, can be modelled by the formula $$n_A = ae^{0.1t}$$ where t is the time in years after 1 January 2017. The number of trees affected by disease B, $n_{\rm B}$, can be modelled by the formula $$n_{\rm B} = b e^{0.2t}$$ On 1 January 2017 a total of 290 trees were affected by a fungal disease. On 1 January 2018 a total of 331 trees were affected by a fungal disease. 12 (a) Show that b = 90, to the nearest integer, and find the value of a. [3 marks] $$a + b = 296$$ $$ae^{0.1} + be^{0.2} = 331.$$ $$a = 290 - b.$$ $$(290 - b) e^{0.1} + be^{0.2} = 331.$$ $$b(e^{0.2} - e^{0.1}) = 331 - 290e^{0.1}$$ $$b = \frac{331 - 290e^{0.1}}{e^{0.2} - e^{0.1}}$$ $$b = 90 \quad (rearest integer).$$ $$a = 290 - 90$$ $$a = 200 \quad (rearest integer).$$ | Estimate the total number of trees that will be affected by a fungal disease on 1 January 2020. [1 mark] | |---| | | | n= 200e °·1 + 90 e °·6 | | n= 434 | | Find the year in which the number of trees affected by disease B will first exceed the number affected by disease A. | | 90e 0.26 > 200e 0.16 as a (x.= x.)4 | | e 0.16 > 200 . S. to sulley of the T | | 0.16 > L (200) | | t > 10 h (200) | | t > 7.985 | | So in 84 year | | notherweb mater 5 are 304 5 and 18412 and 20 24 and 18410 | | Circle your answer. | | (24.8 44.1 616.2 1941.2 | | | | | | Experture second part of experience and content of the Second Sec | | Comment on the long-term accuracy of the model. [1 mark] | | The model predicts unlimited degence | | growth, honever there are only gintely | | mony trees, so nodel will eventually break down. | | break down. | | | Turn over for Section B Do not write outside the ## Section B Answer all questions in the spaces provided. The table below shows the probability distribution for a discrete random variable X. | x | 0 | 1 | 2 | 3 | 4 or more | |----------|------|------|---|------|-----------| | P(X = x) | 0.35 | 0.25 | k | 0.14 | 0.1 | Find the value of k. Circle your answer. [1 mark] 0.14 0.16 0.18 1 Given that $\sum x = 364$, $\sum x^2 = 19412$, n = 10, find σ , the standard deviation of X. Circle your answer. [1 mark] 24.8 44.1 616.2 1941.2 | 5 | Nicola, a darts player, is practising hitting the bullseye. She knows from previous experience that she has a probability of 0.3 of hitting the bullseye with each dart. | |-------|--| | | Nicola throws eight practice darts. | | 5 (a) | Using a binomial distribution, calculate the probability that she will hit the bullseye three or more times. | | | $N\sim B(8,0.3)$. | | | P(N=3)=1-P(N=2) | | | =1-0.55177 | | | = 0.448. | | | | | | the state of s | | | | | 5 (b) | Nicola throws eight practice darts on three different occasions. Calculate the probability that she will hit the bullseye three or more times on all three occasions. [2 marks] | | 5 (b) | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] $e^{2} = 0 \cdot k48^{3}$ | | (b) | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] | | i (b) | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] $e^{2} = 0 \cdot k48^{3}$ | | i (b) | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] $e^{2} = 0 \cdot k48^{3}$ | | 5 (b) | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] $e^{2} = 0 \cdot k48^{3}$ | | 5 (b) | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] Fob = 0 . 448³ = 0 . 0 90 State two assumptions that are necessary for the distribution you have used in part (a) to be valid. | | | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] | | | State two assumptions that are necessary for the distribution you have used in part (a) to be valid. [2 marks] State two assumptions that are necessary for the distribution you have used in part (a) to be valid. [2 marks] [2 marks] [2 marks] [3 marks] [4 probability of hitting the bulleye Stays at 0-3 | | | probability that she will hit the bullseye three or more times on all three occasions. [2 marks] | Do not write outside the box The table below is an extract from the Large Data Set, showing the purchased quantities of fats and oils for the South East of England in 2014. | Description | Purchased quantity | | |--------------------------------|--------------------|--| | Butter | 42 | | | Soft margarine | 16 | | | Olive oil | 17 | | | Other vegetable and salad oils | 28 | | Kim claims that more olive oil was purchased in the South East than soft margarine. Explain why Kim may be incorrect. [2 marks] | There are | e re uni | 4 50 | all u | its a | ould be | |-----------|-----------|------|-------|-------|---------| | | . Fulla | | | | | | | bely near | | | | | | capacity | | | | | | | likely | | | | | | Turn over for the next question She records how many hours per week they practice the piano along with their most recent practical exam score. | Student | Practice (hours per week) | Practical exam score (out of 100) | |------------|---------------------------|-----------------------------------| | Donovan | 50 | 64 | | Vazquez | 6 | 71 | | Higgins | 3 | 55 | | Begum | 2.5 ent ni 2.5 entonuq | rew to ev47 erorn ter | | Collins | 1 | 80 | | Coldbridge | 4 | 61 | | Nedbalek | 4.5 | 65 | | Carter | 8 | 83 | | White | 11 | 92 | She plots a scatter diagram of this data, as shown below. | 18 (a) | Identify two possible outliers by name, giving a possible explanation for the position on the scatter diagram of each outlier. | |-------------|--| | | First outlier Donora [4 marks] | | | Possible reason Ever in data entry (perhaps | | | reante to be 5 not 50). | | | Second outlierCollins | | | Possible reason Naturally able student. | | | | | 18 (b) | Jennie discards the two outliers. | | 18 (b) (i) | Describe the correlation shown by the scatter diagram for the remaining points. [1 mark] | | | Strong positive correlation. | | | - 3P - C - C - C - C - C - C - C - C - C - | | 18 (b) (ii) | Interpret this correlation in the context of the question. [1 mark] | | | Studente uno proctice more person
better is the exam. | | | berry 6 de exam. | | | | | | | | | Turn over for the next question | 19 Marti | n grows | cucumbers | from | seed | |----------|---------|-----------|------|------| |----------|---------|-----------|------|------| In the past, he has found that 70% of all seeds successfully germinate and grow into cucumber plants. He decides to try out a new brand of seed. The producer of this brand claims that these seeds are more likely to successfully germinate than other brands of seeds. Martin sows 20 of this new brand of seed and 18 successfully germinate. Carry out a hypothesis test at the 5% level of significance to investigate the producer's claim. [7 marks] | Ho: p=0-7 melition ows soft abaselian del | |--| | (i) Describe the correlation shown by the scatter of 0 5 up remain; on thinks. | | Under Null hypothesis: | | X ~ B(20, 0.7). | | P(x = 18) = 1- P(x = 17) = 1-0.965 | | = 0.035 60.05. | | So reject the quest of the context of the quest (ii) Interpret this correlation in the context of the quest the context of the part of the context co | | There is suggistent evidence that | | the new seeds are more likely | | to germinate. | | | | | | | | Turn over for the next question | | | | | | | | | Do not write outside the box # **END OF QUESTIONS** DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Do not write outside the There are no questions printed on this page box DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED #### Copyright information For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ. Copyright © 2018 AQA and its licensors. All rights reserved.