AQAE

Please write clearly in block capitals.

Centre number

Surname
Forename(s)
Candidate signature \qquad

AS

MATHEMATICS

Paper 1

Wednesday 16 May 2018

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided:

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
1 16	
+ Jrat	

Section A

Answer all questions in the spaces provided.

1 Three of the following points lie on the same straight line.
Which point does not lie on this line?

Tick one box.

2 A circle has equation $(x-2)^{2}+(y+3)^{2}=13$
Find the gradient of the tangent to this circle at the origin.
Circle your answer.

$$
-\frac{3}{2}
$$

$$
-\frac{2}{3}
$$

3 State the interval for which $\sin x$ is a decreasing function for $0^{\circ} \leq x \leq 360^{\circ}$
Between 90° and 270°.
$\Rightarrow 90^{\circ}<x<270^{\circ}$.
\qquad
\qquad
\qquad

Turn over for the next question

4 (a) Find the first three terms in the expansion of $(1-3 x)^{4}$ in ascending powers of x.

$$
\begin{aligned}
(1-3 x)^{4} & \approx 1+4(-3 x)+6(-3 x)^{2}+\ldots \\
& =1-12 x+54 x^{2}+\ldots
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

4 (b) Using your expansion, approximate $(0.994)^{4}$ to six decimal places.
Let $\quad 1-3 x=0.994$.

$$
\begin{aligned}
& \Rightarrow x=0.002 \\
& \Rightarrow(0.994)^{4}=1-12(0.002)+54(0.002)^{2} \\
&=0.976216
\end{aligned}
$$

$5 \quad$ Point C has coordinates $(c, 2)$ and point D has coordinates $(6, d)$.
The line $y+4 x=11$ is the perpendicular bisector of $C D$.
Find c and d.

$$
\begin{aligned}
& m_{\text {peep }}=-4 . \\
& \Rightarrow \quad m_{e 0}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& d y=d-2 \\
& d x=6-c
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}= m_{C D} \\
&=\frac{d-2}{6-c}=\frac{1}{4} \\
& \Rightarrow 4 d-8=6-c \\
& \Rightarrow c+4 d=14
\end{aligned}
$$

Since $y+4 x=11$ is the bisector we most find the midpoint of C and D :
\qquad
\qquad
\qquad
$\Rightarrow \quad 2+d+4(6+c)=22$
$\Rightarrow d+4 c=-4$
$d+4 c=-4, \quad c+4 d=14$
$\Rightarrow 4 d+16 c=-16, \quad c+4 d=14$

$$
\Rightarrow \quad 15 c=-30
$$

$$
\Rightarrow c=-2 \quad \Rightarrow \quad d=4
$$

$6 \quad A B C$ is a right-angled triangle.

D is the point on hypotenuse $A C$ such that $A D=A B$.
The area of $\triangle A B D$ is equal to half that of $\triangle A B C$.
6 (a) Show that $\tan A=2 \sin A$

Let $A D=A B=x$
If the area of $\triangle A B D=\frac{1}{2} \triangle A B C$,
the area of $\triangle A B D=\triangle C B D$.

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} A C=A D=x . \Rightarrow A C=2 x \\
& \cos A=\frac{x}{2 x}=\frac{1}{2} \\
& \Rightarrow A=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} . \\
& \Rightarrow \sin A=\frac{\sqrt{3}}{2}, \tan A=\sqrt{3} . \\
& \Rightarrow 2 \sin A=\sqrt{3}=\tan A .
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

6 (b) (i) Show that the equation given in part (a) has two solutions for $0^{\circ} \leq A \leq 90^{\circ}$
$\tan A=\frac{\sin A}{\cos A}=2 \sin A$

$\Rightarrow \quad \sin A=2 \sin A \cos A$.

which is true for $A=0^{\circ}, 60^{\circ}$.
\qquad
\qquad

6 (b) (ii) State the solution which is appropriate in this context.
\qquad would not have a triangle).

Turn over for the next question
n is a prime number greater than $5 \Rightarrow n^{4}$ has final digit 1
If last digit of $n=1:(10 k+1)^{4}$

$$
=\cdots+1^{4}=\ldots+1
$$

\Rightarrow last digit is 1 .
\qquad
\Rightarrow last digit is 1 .
If last digit of $n=7:(10 k+7)^{4}$

$$
=\cdots+7^{4}=\cdots+2401
$$

\Rightarrow last digit is 1 .

$$
=\ldots+9^{4}=\cdots+6561 .
$$

\Rightarrow last digit is 1 .
Last digit of $n=5$ can be ignored as n will be divisible by 5 (i.e. not prime).

8 Maxine measures the pressure, P kilopascals, and the volume, V litres, in a fixed quantity of gas.

Maxine believes that the pressure and volume are connected by the equation

$$
P=c V^{d}
$$

where c and d are constants.
Using four experimental results, Maxine plots $\log _{10} P$ against $\log _{10} V$, as shown in the graph below.

8 (a) Find the value of P and the value of V for the data point labelled A on the graph.
[2 marks]

$$
\log _{10} P_{A}=2.18 \Rightarrow P_{A}=10^{2.18}=151 .
$$

$\log _{10} P_{V}=-0.15 \Rightarrow V_{A}+0^{-0.15}=0.708:$ \qquad ——
\qquad
\qquad

8 (b) Calculate the value of each of the constants c and d.

$$
\begin{aligned}
P=c V^{d} \Rightarrow \log _{10} P & =\log _{10} c v^{d} \\
& =\log _{10} c+d \log _{10} v
\end{aligned}
$$

\qquad
$d=$ gradient $=-1.4$
$\log _{i c} C=\log _{10} p$ intercept $=1.97$

$$
\Rightarrow \quad c=93.3
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8 (c) Estimate the pressure of the gas when the volume is 2 litres.

$$
P=93.3 \mathrm{~V}^{-1.4} \text {. }
$$

Let $V=2$

$$
\begin{aligned}
\Rightarrow P=93.3(2)^{-1.4} & =35.35 \\
& =35.4 \text { bile prowls. }
\end{aligned}
$$

\qquad
\qquad

Each chord joins the point $(3,-6)$ to the point $(3+h, \mathrm{f}(3+h))$
The table shows some of Craig's results.

x	$\mathrm{f}(x)$	h	$x+h$	$\mathrm{f}(x+h)$	Gradient
3	-6	1	4	-12	-6
3	-6	0.1	3.1	-6.51	-5.1
3	-6	0.01	3.01	-6.0501	-5.01
3	-6	0.001			
3	-6	0.0001			

9 (a) Show how the value -5.1 has been calculated.
\qquad
\qquad

9 (b) Complete the third row of the table above.

$$
\begin{aligned}
& x+h=3+0.01=3.01 \\
& \frac{f(x+h)=3.01-(3.01)^{2}=-6.0501}{\text { Gradient }=\frac{(-6.0501)-(-6))}{(3.01-3)}=-5.01}
\end{aligned}
$$

\qquad

9 (c) State the limit suggested by Craig's investigation for the gradient of these chords as h tends to 0
\qquad
\qquad
\qquad

9 (d) Using differentiation from first principles, verify that your result in part (c) is correct.

$$
\begin{aligned}
\text { Gradient } & =\frac{f(x+h)-f(x)}{x+h-x} \\
& =\frac{(3+h)-(3+h)^{2}-\left(3-3^{2}\right)}{h} \\
& =\frac{3+h-9-6 h-h^{2}-(-6)}{h} \\
& =\frac{-5 h-h^{2}}{h} \\
& =-5-h .
\end{aligned}
$$

As $h \rightarrow 0, m \rightarrow-5$.
Therefore, $x=3 \Rightarrow m=-5$.

10
A curve has equation $y=2 x^{2}-8 x \sqrt{x}+8 x+1$ for $x \geq 0$
Do not write

10 (a) Prove that the curve has a maximum point at $(1,3)$
Fully justify your answer.

When $x=1, \quad y=2(1)^{2}-8(1)(\sqrt{1})+8(1)+1$

$$
=2-8+8+1
$$

$$
=3
$$

$$
x \sqrt{x}=x^{3 / 2}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =(2 \cdot 2) x-\left(8 \cdot \frac{3}{2}\right) x^{1 / 2}+8 \\
& =4 x-12 \sqrt{x}+8
\end{aligned}
$$

Stationary paint occurs when $\frac{d y}{d x}=0$.

$$
\begin{gathered}
4 x-12 \sqrt{x}+8=0 \Rightarrow x=0 \\
\Rightarrow x=1,4 .
\end{gathered}
$$

Stationary point at $x=1$ verified.
\qquad
\qquad
$d x^{2}=4-6 x^{-1 / 2}$

$$
x=1 \quad \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=-2<0
$$

If $\frac{d^{2} y}{d x^{2}}<0$, this is a maximum
point.
\qquad
\qquad
\qquad
\qquad
\qquad

10 (b) Find the coordinates of the other stationary point of the curve and state its nature.

$$
\begin{gathered}
x=4 . \Rightarrow y=2(4)^{2}-8(4)(\sqrt{4})+8(4)+1=1 \\
\frac{d^{2} y}{d x^{2}}=4-6 x^{-\frac{1}{2}}=1>0 \\
\text { when } x=4 . \\
\frac{d^{2} y}{d x^{2}} \geqslant 0 \text { suggests }(4,1) \text { is a } \\
\text { minimum paint. }
\end{gathered}
$$

Section B

Answer all questions in the spaces provided.

11 In this question use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$
A ball, initially at rest, is dropped from a height of 40 m above the ground.
Calculate the speed of the ball when it reaches the ground.
Circle your answer.
$-28 \mathrm{~ms}^{-1} \quad 28 \mathrm{~ms}^{-1} \quad-780 \mathrm{~ms}^{-1} \quad 780 \mathrm{~ms}^{-1}$

$$
v^{2}=u^{2}+2 a s \Rightarrow v^{2}=0^{2}+(2 \times 9.8 \times 40)
$$

12 An object of mass 5 kg is moving in a straight line.
As a result of experiencing a forward force of F newtons and a resistant force of R newtons it accelerates at $0.6 \mathrm{~m} \mathrm{~s}^{-2}$

Which one of the following equations is correct?
Circle your answer.

$$
\begin{array}{cc}
F-R=0 & F-R=5 \quad F-R=3 \quad F-R=0.6 \\
F_{x}=m a & \quad[1 \text { mark] } \\
& \Rightarrow=0.6 \mathrm{~ms}^{-2}, m=5 \mathrm{~kg} \\
\Rightarrow F_{x}=3 \mathrm{~N} .
\end{array}
$$

[1 mark]

13 A vehicle, which begins at rest at point P, is travelling in a straight line.
For the first 4 seconds the vehicle moves with a constant acceleration of $0.75 \mathrm{~m} \mathrm{~s}^{-2}$
For the next 5 seconds the vehicle moves with a constant acceleration of $-1.2 \mathrm{~ms}^{-2}$
The vehicle then immediately stops accelerating, and travels a further 33 m at constant speed.

13 (a) Draw a velocity-time graph for this journey on the grid below.

13 (b) Find the distance of the car from P after 20 seconds.
For $0 \leqslant t<4=\frac{1}{2} \times 3 \times 4=+6 \mathrm{~m}$.
For $4 \leq t<6.5: \frac{1}{2} \times 3 \times 2.5=+3.75 \mathrm{~m}$
For $6.5 \leq t<9: \frac{1}{2} \times-3 \times 2.5=-3.75 \mathrm{~m}$
For $9 \leq t \leq 20:-33 \mathrm{~m}$.

Total $=-27 \mathrm{~m}$, distance from p is 27 m .
\qquad
\qquad
\qquad

14 In this question use $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Two particles, of mass 1.8 kg and 1.2 kg , are connected by a light, inextensible string over a smooth peg.

14 (a) Initially the particles are held at rest 1.5 m above horizontal ground and the string between them is taut.

The particles are released from rest.
Find the time taken for the 1.8 kg particle to reach the ground.

$$
\begin{array}{r}
\left(1.8 \mathrm{~kg} \times 9.81 \mathrm{~ms}^{-2}\right)-T=1.8 \times a \\
T-\left(1.2 \mathrm{~kg} \times 9.81 \mathrm{~ms}^{-2}\right)=1.2 \times a
\end{array}
$$

\qquad
\qquad
\qquad

$$
\Rightarrow a=1.962 \mathrm{~ms}^{-2}
$$

\qquad

$$
S=u t+\frac{1}{2} a t^{2}
$$

\qquad

$$
1.5=0 t+\left(\frac{1}{2} \times 1.962 \times t^{2}\right)
$$

$$
\Rightarrow t^{2}=\frac{3}{1.962} \Rightarrow t=1.2365 \mathrm{~s}
$$

$$
=1.24 s
$$

\qquad
\qquad

14 (b) State one assumption you have made in answering part (a).
\qquad

15 A cyclist, Laura, is travelling in a straight line on a horizontal road at a constant speed of $25 \mathrm{~km} \mathrm{~h}^{-1}$

A second cyclist, Jason, is riding closely and directly behind Laura. He is also moving with a constant speed of $25 \mathrm{~km} \mathrm{~h}^{-1}$

15 (a) The driving force applied by Jason is likely to be less than the driving force applied by Laura.

Explain why.

He facer less air resistance.

15 (b) Jason has a problem and stops, but Laura continues at the same constant speed.
Laura sees an accident 40 m ahead, so she stops pedalling and applies the brakes.
She experiences a total resistance force of 40 N
Laura and her cycle have a combined mass of 64 kg
15 (b) (i) Determine whether Laura stops before reaching the accident.
Fully justify your answer.
$F=m a . F=40 \mathrm{~N} \quad \dot{m}=64 \mathrm{~kg} \Rightarrow a=-0.625 \mathrm{~ms}^{-2}$ $u=25 \mathrm{kmh}^{-1}=6.944 \mathrm{~ms}^{-1}$.

$$
V=0 \mathrm{~ms}^{-1}
$$

$v^{2}=u^{2}+205$
$0=6.944^{2}+(2 x-0.625 \mathrm{~s})$
\qquad
\qquad Laura stops before the accident.
\qquad
\qquad
\qquad

15 (b) (ii) State one assumption you have made that could affect your answer to part (b)(i).

\qquad

Turn over for the next question

16 A remote-controlled toy car is moving over a horizontal surface. It moves in a straight line through a point A.

The toy is initially at the point with displacement 3 metres from A. Its velocity, $v \mathrm{~ms}^{-1}$, at time t seconds is defined by

$$
v=0.06\left(2+t-t^{2}\right)
$$

16 (a) Find an expression for the displacement, r metres, of the toy from A at time t seconds.

$$
r=\int V d t=\int 0.06\left(2+t-t^{2}\right) d t
$$

$$
=0.12 t+0.03 t^{2}-0.02 t^{3}+c
$$

\qquad
\qquad
$t=0 \Rightarrow s=3 . \Rightarrow c=3$.
\qquad

$$
\Rightarrow \quad r=0.12 t+0.03 t^{2}-0.02 t^{3}+3
$$

\qquad
\qquad
\qquad
\qquad
\qquad

16 (b) In this question use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$
At time $1=2$ seconds, the toy launches a ball which travels directly upwards with initial speed $3.43 \mathrm{~m} \mathrm{~s}^{-1}$

Find the time taken for the ball to reach its highest point.

$$
v=u+a t_{\text {max }}
$$

$$
v=0, \quad u=3.43, \quad a=-9.8
$$

$$
\Rightarrow t_{\text {max }}=\frac{-3.43}{-9.8}=0.35 \mathrm{~s}
$$

$$
\text { Since } t_{\text {init }}=2 \text {, }
$$

$t_{\text {max }}$ is actually 2.35 s .
\qquad
\qquad

END OF QUESTIONS

