AQA

	ease write clearly in I	block capitals.		
Centre number	entre number		Candidate number	
Surname	Irname .			
Forename(s)	prename(s)			
Candidate signature	andidate signature			

AS MATHEMATICS

Paper 1

Wednesday 16 May 2018

Morning

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the
- requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exami	ner's Use
Question	Mark
1	a a 19
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	a province and the second s
16	
TOTAL	

Do not write outside the State the interval for which sin x is a decreasing function for $0^{\circ} \le x \le 360^{\circ}$ 3 box [2 marks] Between 90° and 270° . $\Rightarrow 90^{\circ} < \infty < 270^{\circ}$. 270° 90° Turn over for the next question Turn over ►

Jun18/7356/1

Do not write outside the Find the first three terms in the expansion of $(1 - 3x)^4$ in ascending powers of x. 4 (a) box [3 marks] $(1-3x)^{+} = 1 + 4(-3x) + 6(-3x)^{2} + \cdots$ 1 - 12x + 54xFor Small - Holves of 300 Using your expansion, approximate $(0.994)^4$ to six decimal places. 4 (b) [2 marks] Let 1 - 3x = 0.994. = x = 0.002 $(0.994)^4 = 1 - 12(0.002) + 54(0.002)^2$ ヨ = 0.976216

5 Point C has coordinates (c, 2) and point D has coordinates (6, d). The line y + 4x = 11 is the perpendicular bisector of *CD*. Find c and d. [5 marks] Morg 7 d-2 dy = 6-c $\frac{dy}{dx} = m_{cD} = \frac{d-2}{6-c} = \frac{1}{4}$ = -2 + 4d = -2Since y+4x=11 is the bisector, must find the midpoint of C and 6+C 2+dx = -2 2 +d 6+c = 11+ 4 3 2+d + 4(6+c) = 22E =) d + 4c = -4d+4c =-4, c+4d=14 = -4d + 16c = -16, c + 4d = 14= -30=) c=-2 => d=4

Turn over 🕨

5

Do not write outside the 6 (b) (i) Show that the equation given in part (a) has two solutions for $0^{\circ} \le A \le 90^{\circ}$ box [2 marks] $tanA = \frac{sinA}{cosA}$ $= 2 \sin A$ Sin A= 2sin A cos A. È which is the for A=0°, 60°. 6 (b) (ii) State the solution which is appropriate in this context. [1 mark] A=60°. (A=0° isn't appropriate as we would not have a sectriangle). Turn over for the next question Turn over >

Prove that *n* is a prime number greater than $5 \Rightarrow n^4$ has final digit 1 [5 marks] 1 = (10k + 1)If last digit of 0 ... + 1 = last digit is シ 1 If last digit of 3: (10k+3) 0 -2 81 Ð digit is last (10k+7) 16 last digit of 7: 0 Ξ 2401 + last digit is = If last digit (10k+9) of n=9: 9 -6561 ... + => last digit îS 1 digit of n=5 can be ignored Last as be divisible by 5 (i.e. not prime) will 0

7

Maxine measures the pressure, P kilopascals, and the volume, V litres, in a fixed quantity of gas.

Maxine believes that the pressure and volume are connected by the equation

 $P = cV^d$

where c and d are constants.

8

Using four experimental results, Maxine plots $\log_{10} P$ against $\log_{10} V$, as shown in the graph below.

Do not write outside the box

e (L)	Calculate the value of each of the constants c and d .
8 (b)	Calculate the value of each of the constants c and d. $P = CV^{d} \implies \log_{10} P = \log_{10} CV^{d}$ $= \log_{10} C + d\log_{10} V$
	$d = \text{gradient} = -1.4$ $\log_{10}C = \log_{10}P \text{ intercept} = 222 1.97$ $\Rightarrow C = 93.3.$
8 (c)	Estimate the pressure of the gas when the volume is 2 litres. $P = 93 \cdot 3 V$ [2 marks]
	$\frac{\text{Let } V = 21}{\text{= } P = 93.3(2)^{-1.4}} = 35.35$ $= 35.4 \text{ bile paralls.}$
	Turn over ►

Craig is investigating the gradient of chords of the curve with equation $f(x) = x - x^2$ Each chord joins the point (3, -6) to the point (3 + *h*, f (3 + *h*))

The table shows some of Craig's results.

9

x	f (x)	h	x + h	f(x + h)	Gradient
3	-6	1	4	-12	-6
3	-6	0.1	3.1	-6.51	-5.1
3	-6	0.01	3-01	-6.0501	- 5-01
3	-6	0.001			
3	-6	0.0001			

Show how the value -5.1 has been calculated. 9 (a)

(-6-51) - (-6))(3-1 - 3) = -5.1

Complete the third row of the table above. 9 (b)

2c+h=3+0.01=3.01 $f(x+h) = 3.01 - (3.01)^2 = -6.0501$

 $\frac{\text{Gradient} = (-6.0501) - (-6)}{(3.01 - 3)} = -5.01$

Do not write outside the box

[2 marks]

[1 mark]

Do not write outside the State the limit suggested by Craig's investigation for the gradient of these chords as h9 (c) box tends to 0 [1 mark] As h-70, m-7-5. Using differentiation from first principles, verify that your result in part (c) is correct. 9 (d) [4 marks] Gradient = f(x+h) - f(x) $\infty + h - \infty$ $(3+h) - (3+h)^2 - (3-3^2)$ $3 + h - 9 - 6h - h^2 - (-6)$ 2 h $-Sh - h^2$ 1 h - S - h . Ξ As h=0, m==-5. Therefore, $\infty = 3 = 2 m = -5$.

Turn over ►

10 A curve has equation
$$y = 2x^2 - 8x\sqrt{x} + 8x + 1$$
 for $x \ge 0$
10 (a) Prove that the curve has a maximum point at (1, 3)
Fully justify your answer.
(9 marks)
When $x = 1$, $y = 2(1)^2 - 8(1)(5) + 8(1) + 1$
 $= 2 - 8 + 8 + 1$
 $= 3$.
 $x \sqrt{x} = x^{3/2}$
 $\frac{dy}{dx} = (2 \cdot 2) x - (8 \cdot \frac{3}{2}) x^{5/2} + 8$
 $= 4x - 12\overline{x} + 8$
Stationary part occurs when $\frac{dy}{dx} = 0$.
 $4x - 12\overline{x} + 8 = 0 \Rightarrow 1x - 3\sqrt{x} + 2 = 0$
 $\Rightarrow x = 1, 4$.
Stationary part at $x = 1$ verified.
 $\frac{d^2y}{dx^2} = 4 - 6x^{5/2}$
 $x = 1 - 2 < 0$
 $\int e^{\frac{d^3y}{dx^2}} = -2 < 0$

Section B

Answer all questions in the spaces provided.

11 In this question use $g = 9.8 \,\mathrm{m \, s^{-2}}$

A ball, initially at rest, is dropped from a height of 40 m above the ground.

Calculate the speed of the ball when it reaches the ground.

Circle your answer.

$$-28 \,\mathrm{m\,s^{-1}}$$
 $-780 \,\mathrm{m\,s^{-1}}$ $780 \,\mathrm{m\,s^{-1}}$

 $V^{2} = u^{2} + 2as = V^{2} = O^{2} + (2 \times 9.8 \times 40)$

An object of mass 5 kg is moving in a straight line.

As a result of experiencing a forward force of F newtons and a resistant force of R newtons it accelerates at $0.6 \,\mathrm{m\,s^{-2}}$

Which one of the following equations is correct?

Circle your answer.

[1 mark]

[1 mark]

F - R = 0 F - R = 5 F - R = 3 F - R = 0.6

F _x = ma	$a = 0.6 \text{ms}^{-2}$, $m = 5 \text{kg}$
	$\Rightarrow F_{x} = 3N$

16

A vehicle, which begins at rest at point P, is travelling in a straight line. 13 For the first 4 seconds the vehicle moves with a constant acceleration of $0.75\,m\,s^{-2}$ For the next 5 seconds the vehicle moves with a constant acceleration of $-1.2 \,\mathrm{m\,s^{-2}}$ The vehicle then immediately stops accelerating, and travels a further 33 m at constant speed. Draw a velocity-time graph for this journey on the grid below. 13 (a) [3 marks] 5 4 3. 2 1 Velocity 0 10 11 12 13 14 15 16 17 18 19 20 21 22 (m s⁻¹) 8 9 Ś 5 0 2 4 6 -1 -2 -3 -4 -5 Time (seconds) Find the distance of the car from P after 20 seconds. 13 (b) [3 marks] 0 < t < 4 : 1 × 3 × 4 =+6m. For For 45626.5 : 2×3×2-5= +3.75m For 6.56t < 9 : 2x-3x2.5 = -3.75m For 9 5 + 520 = -33m. Total = - 27m, distance from p is 27m.

Turn over <

14 In this question use $g = 9.81 \,\mathrm{m \, s^{-2}}$

Two particles, of mass 1.8 kg and 1.2 kg, are connected by a light, inextensible string over a smooth peg.

14 (a) Initially the particles are held at rest 1.5 m above horizontal ground and the string between them is taut.

The particles are released from rest.

Find the time taken for the 1.8 kg particle to reach the ground.

[5 marks] $(1.8 kg \times 9.8 lms^{-2}) - T = 1.8 \times a$ $T - (1.2 \text{ kgx} 9.8 \text{ lms}^{-2}) = 1.2 \text{ xa}$ 17.658 - T = 1.8a11.772 = 1.20-2 a= 1.962ms =7 S= ut + = at2 Ot + (1 × 1.962 ×t2) +2 £= 1-23655 =) -1-962 1-245. =

19 Do not write outside the box State one assumption you have made in answering part (a). 14 (b) [1 mark] Air resistance is ignored. Turn over for the next question Turn over 🕨

A cyclist, Laura, is travelling in a straight line on a horizontal road at a constant speed of $25 \text{km} \text{h}^{-1}$
A second cyclist, Jason, is riding closely and directly behind Laura. He is also moving with a constant speed of 25 km h^{-1}
The driving force applied by Jason is likely to be less than the driving force applied by Laura.
Explain why.
[1 mark]
He faces less air resistance.
Jason has a problem and stops, but Laura continues at the same constant speed.
Laura sees an accident 40 m ahead, so she stops pedalling and applies the brakes.
She experiences a total resistance force of 40 N
Laura and her cycle have a combined mass of 64 kg
Determine whether Laura stops before reaching the accident.
Fully justify your answer. [4 marks]
14 []]d[KS]
-
F=ma. F=40M m=64kg = a= -0.625ms ²
$\frac{F = ma}{u = 25kmh^{-1}} = \frac{6.944ms^{-1}}{1}$
F=ma. F=40M m=64kg = a= -0.625ms ²
$\frac{F = ma}{U = 25kmh^{-1}} = \frac{6.944ms^{-1}}{1}$
$F = ma \cdot F = 40N \cdot m = 64kg \Rightarrow a = -0.625ms^{-2}$ $u = 25kmh^{-1} = 6.944ms^{-1} \cdot \frac{1}{2}$ $V = 0 ms^{-1}$ $V = 0 ms^{-1}$
$F = ma \cdot F = 40N \cdot m = 64kg \Rightarrow a = -0.625 ms^{-2}$ $u = 25kmh^{-1} = 6.944ms^{-1} \cdot N = 0 ms^{-1}$ $V = 0 ms^{-1}$ $V^{2} = u^{2} + 2as$ $0 = 6.944^{2} + (2 \times -0.625 \text{ s}).$
$F = ma \cdot F = 40N \cdot m = 64kg \Rightarrow a = -0.625ms^{-2}$ $u = 25kmh^{-1} = 6.944ms^{-1} \cdot \frac{1}{2}$ $V = 0 ms^{-1}$ $V = 0 ms^{-1}$
$F = ma , F = 40N, m = 64kg \Rightarrow a = -0.625ms^{-2}$ $u = 25kmh^{-1} = 6.944ms^{-1} .$ $V = 0ms^{-1}$ $V = 0ms^{-1}$ $0 = 6.944^{2} + (2 \times -0.625 \text{ s}),$ $= 7 S = 38.575m < 40m$
$F = ma \cdot F = 40N \cdot m = 64kg \Rightarrow a = -0.625 ms^{-2}$ $u = 25kmh^{-1} = 6.944ms^{-1} \cdot N = 0 ms^{-1}$ $V = 0 ms^{-1}$ $V = 0 ms^{-1}$ $0 = 6.944^{2} + (2 \times -0.625 \text{ s}).$
$F = ma , F = 40N , m = 64kg \Rightarrow a = -0.625 ms^{-2}$ $u = 25kmh^{-1} = 6.944ms^{-1} .$ $V = 0 ms^{-1}$ $V^{2} = u^{2} + 2as$ $0 = 6.944^{2} + (2 \times -0.625 s).$ $= 5 = 38.575 m < 40m$

15 (b) (ii)	(ii) State one assumption you have made that could affect your answer to part (b)(i). [1 mark]				Do not write oulside the box	
	Resistive	force	diminishes	പ		
	speed	decra	euses,			

Turn over for the next question

Do not write outside the 16 A remote-controlled toy car is moving over a horizontal surface. It moves in a straight box line through a point A. The toy is initially at the point with displacement 3 metres from A. Its velocity, $v \text{ m s}^{-1}$, at time t seconds is defined by $v = 0.06(2 + t - t^2)$ Find an expression for the displacement, r metres, of the toy from A at time 16 (a) t seconds. [4 marks] $\int 0.06 (2+t-t^2) dt$ V dt = $= 0.12t + 0.03t^2 - 0.02t^3$ +0 S=3. $\exists c=3$. t=0 3 $= \Gamma = 0.12t + 0.03t^2 - 0.02t^3 + 3$

16 (b) In this question use $g = 9.8 \,\mathrm{m\,s^{-2}}$

At time t = 2 seconds, the toy launches a ball which travels directly upwards with initial speed $3.43 \,\mathrm{m \, s^{-1}}$

Find the time taken for the ball to reach its highest point.

V= u tatany V=0, u= 3.43, a=-9.8 Agros $t_{max} = \frac{-3.43}{-9.8} = 0.35s$ =) tinit = 2, Since tmax is actually 2.35s. END OF QUESTIONS

Do not write outside the box

[3 marks]

