

Please write clearly in block capitals.

Centre number

Candidate number

Sumame

Forename(s)

Candidate signature

A-level MATHEMATICS

Paper 2

Wednesday 13 June 2018

Morning

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet
- You do not necessarily need to use all the space provided.

For Exami	ner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
TOTAL	

Section A

Answer all questions in the spaces provided.

1 Which of these statements is correct?

Tick one box.

[1 mark]

$$x = 2 \Rightarrow x^2 = 4$$

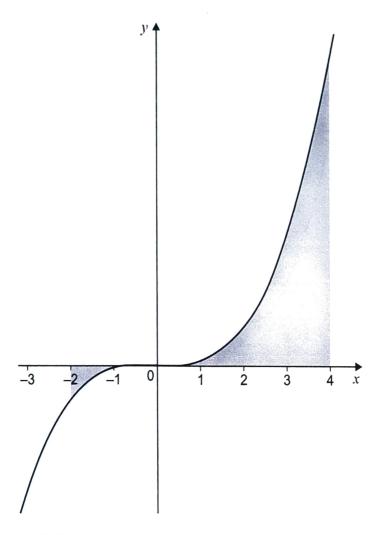
$$x^2 = 4 \Rightarrow x = 2$$

$$x^2 = 4 \Leftrightarrow x = 2$$

$$x^2 = 4 \Rightarrow x = -2$$

Find the coefficient of x^2 in the expansion of $(1 + 2x)^7$

Circle your answer.


[1 mark]

$$\binom{7}{2}$$
 1^{7-2} $(2x)^2 = 21 \times 4x^2 = 84x^2$

The graph of $y = x^3$ is shown.

3

Do not write outside the box

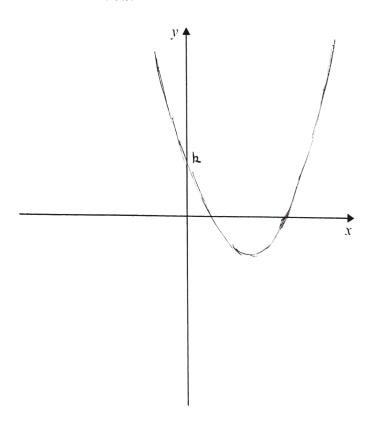
Find the total shaded area.

Circle your answer.

[1 mark]

$$-68$$

$$\int_{2}^{\infty} x^{3} = \left[\frac{1}{4}x^{4}\right]_{2}^{\infty} = \left[\frac{1}{4}x^{4}\right]_{0}^{\infty} = 64$$


$$64 + -(-4) = 68.$$

Turn over ▶

- A curve, C, has equation $y = x^2 6x + k$, where k is a constant. The equation $x^2 - 6x + k = 0$ has two distinct positive roots.
- 4 (a) Sketch C on the axes below.

[2 marks]

Find the range of possible values for k .	
Fully justify your answer.	
	[4 marks]
b ² -4ac	>0 (2 distinct
	roots).
36-4k >0 3 ki	9
Since both roots a	ce posítive, we
have k70.	
3 Ock 69	

Turn over for the next question

4 (b)

Turn over ▶

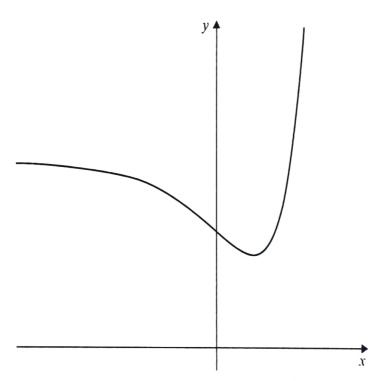
	[2 marks]
Check forfactors under 128 × 4.8.	
Check 2, 3, 4.	
23 23 23	
$\frac{23}{2} = 11.5, \frac{23}{3} = 7.6, \frac{23}{4} = 5.75$	
=> 23 is prime.	

6	Find the coordinates of the stationary point of the curve with equation
	$(x+y-2)^2 = e^y - 1$

x ·	+	y	_	2)	2	=	e.v	_	1
-----	---	---	---	----	---	---	-----	---	---

[7 marks]

= $2(x+y-2)$	$(1 + \frac{dy}{dx}) =$	e 200	
Stationary		W-	
)	point -/		
=0			


000				
	90 + 4 - 2	= 0.		

_=>	$e^{y} - 1 = 0$	
	$e^{y} = 1$	
ョ	y = 0.	

_		<u> </u>		 	
		J	_		
	⇒	oc =	2 ·		
-					

7 A function f has domain \mathbb{R} and range $\{y \in \mathbb{R} : y \ge e\}$

The graph of y = f(x) is shown.

The gradient of the curve at the point (x, y) is given by $\frac{dy}{dx} = (x - 1)e^x$

Find an expression for f(x).

Fully justify your answer.

[8 marks]

$$y = \int (x-1)e^x dx$$

$$u = \infty - 1 \qquad , \qquad V = e^{\infty}$$

$$u' = 1 \qquad , \qquad V' = e^{\infty}$$

$$y = (x-1)e^{x} - \int e^{x} dx$$

$$= (x-1)e^{x} - e^{x} + c$$

$$= (2c-2)e^{x} + c$$

$$\frac{dy}{dx} = 0 \Rightarrow x = 1.$$

	rve passes C=Ze.	through	(1,e).
=	f(x) = (x-2)	e* + 2e.	

Turn over for the next question

Determine a sequence of transformations which maps the graph of $y = \sin x$ onto
the graph of $y = \sqrt{3}\sin x - 3\cos x + 4$

Fully justify your answer.

[7 marks]

$$R \sin \alpha (\infty - \alpha) = R \sin \alpha \cos \alpha - R \cos \alpha \sin \alpha$$
Let $R \cos \alpha = \sqrt{3}$, $R \sin \alpha = 3$.

$$7 \tan \alpha = \sqrt{3}$$
 $\Rightarrow \alpha = \frac{\pi}{3}$

$$\sqrt{3}$$
 sinx $-3\cos \infty = 2\sqrt{3}$ sin $(\infty - \frac{\pi}{3})$

$$y = 2\sqrt{3} \sin(x-\frac{\pi}{3}) + 4$$

- Translate in
$$\begin{pmatrix} \frac{\pi}{3} \\ 0 \end{pmatrix}$$

_	Stretch	în	4- di	irection	with
	scale	Gas	Spor S	2.5	

8 (b) (i) Show that the least value of $\frac{1}{\sqrt{3}\sin x - 3\cos x + 4}$ is $\frac{2 - \sqrt{3}}{2}$

[2 marks]

Minimum value occurs when

$$\frac{\sin x}{\sin x} = \sin \left(x - \frac{\pi}{3}\right) = 1$$

$$= 7 \quad x = \frac{5\pi}{6}$$

$$= \frac{2\sqrt{3} - 4}{12 - 16} = \frac{2 - \sqrt{3}}{2}$$

8 (b) (ii) Find the greatest value of $\frac{1}{\sqrt{3}\sin x - 3\cos x + 4}$

[1 mark]

$$\frac{1}{4-2\sqrt{3}} = \frac{4+2\sqrt{3}}{4} = \frac{2+\sqrt{3}}{2}.$$

Turn over for the next question

9 A market trader notices that daily sales are dependent on two variables:

number of hours, t, after the stall opens

total sales, x, in pounds since the stall opened.

The trader models the rate of sales as directly proportional to $\frac{8-t}{x}$

After two hours the rate of sales is £72 per hour and total sales are £336

9 (a) Show that

$$x\frac{\mathrm{d}x}{\mathrm{d}t} = 4032(8-t)$$

[3 marks]

$$\frac{dx}{dt} = k \frac{(8-t)}{x}$$

$$72 = k \frac{8-2}{336} \Rightarrow k = 4032$$

$$\Rightarrow \frac{dx}{dx} = 4032(8-t)$$

[3 marks]

9 (b) Hence, show that

$$x^{2} = 4032t(16 - t)$$

$$\int x \, dx = \int 4032(8 - t) \, dt$$

$$\frac{1}{2}x^2 = 4032\left(8t - \frac{1}{2}t^2\right) + c$$

$$\frac{1}{2}(336)^2 = 4032(16-2) + C$$

$$\Rightarrow \infty^2 = 4032t(16 - t^*)$$

Question 9 continues on the next page

- 9 (c) The stall opens at 09.30.
- 9 (c) (i) The trader closes the stall when the rate of sales falls below £24 per hour.

Using the results in parts (a) and (b), calculate the earliest time that the trader closes the stall.

[6 marks]

 $\frac{dx}{dt}$

de = 24

24x = 4032(8-t)

 $\Rightarrow \quad x = 168(8-1)$

 $(168(8-t))^2 = 4032t(16-t)$

= $t^2 - 16t + 56 = 0$

=> t= 5.171...

=> Shours, 10 minutes

Earliest time is 14:40.

Do not write outside the box

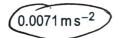
9 (c) (ii)	Explain why the model used by the trader is not valid at 09.30.					[2 marks]	
	When	the	Stall	opens	, Sales	, oc,	
	<i>will</i>	be	zero.				
	The	mode	l îs	indefine	ed at	t=0.	

Turn over for Section B

Turn over ▶

Section B

Answer all questions in the spaces provided.

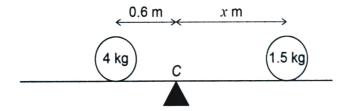

A garden snail moves in a straight line from rest to 1.28 cm s⁻¹, with a constant 10 acceleration in 1.8 seconds.

Find the acceleration of the snail.

Circle your answer.

[1 mark]

 $2.30\,\mathrm{m\,s^{-2}}$ $0.71\,\mathrm{m\,s^{-2}}$


 $0.023\,\mathrm{m\,s^{-2}}$

11 A uniform rod, AB, has length 4 metres.

The rod is resting on a support at its midpoint C.

A particle of mass 4 kg is placed 0.6 metres to the left of C.

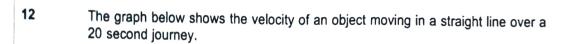
Another particle of mass $1.5 \, \mathrm{kg}$ is placed x metres to the right of C, as shown.

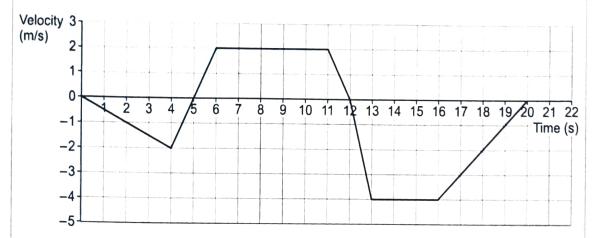
The rod is balanced in equilibrium at C.

Find x.

Circle your answer.

[1 mark]


1,8 m


1.5 m

1.75 m

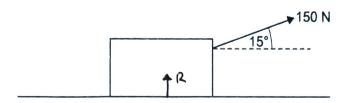
12 (a) Find the maximum magnitude of the acceleration of the object.

[1 mark]

12 (b) The object is at its starting position at times 0, t_1 and t_2 seconds.

Find t_1 and t_2

[4 marks]


0 { t < 4:-4m	Gain 4m after 6s:
4 6 t 6 5 : - Im	8s.
56t66: +1m	After 8s, +6m.
6 5 t 5 11: + 10 m	After 12s, +7m
11 6t 6 12: + 1m	After 13s, +Sm.
125t 5 13: - 2m	lase Gain - Sm after
13 Ct & 16: - 12 m	135: 14.255.
165 t 6 20: - 8m.	

t,=8s, t2=14.25s.

13	In this question use $g=9.8\mathrm{ms^{-2}}$
	A boy attempts to move a wooden crate of mass 20 kg along horizontal ground. The coefficient of friction between the crate and the ground is 0.85
13 (a)	The boy applies a horizontal force of 150 N. Show that the crate remains stationary. [3 marks]
	$F_{\text{max}} = \mu mg.$ = 0.85 x 20kg x 9.8 ms ²
	= 166-6N
	166-6N > ISON, so the box remains stationary.
	remains stationary.

13 (b) Instead, the boy uses a handle to pull the crate forward. He exerts a force of 150 N, at an angle of 15° above the horizontal, as shown in the diagram.

Determine whether the crate remains stationary.

Fully justify your answer.

[5 marks]

$$\frac{20g = R + 150 \, sin \, 15^{\circ}}{3 \, R = 157.177N}$$

1-1-210	145	N 7	133.	6 N
---------	-----	-----	------	-----

So the	crate	niw	begin to	move.
			9	

A quadrilateral has vertices A, B, C and D with position vectors given by

$$\overrightarrow{OA} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}, \ \overrightarrow{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \ \overrightarrow{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \ \text{and} \ \overrightarrow{OD} = \begin{bmatrix} 4 \\ 10 \\ 0 \end{bmatrix}$$

14 (a) Write down the vector \overrightarrow{AB}

$\vec{OB} - \vec{OA} = \vec{AB}$	$=\begin{pmatrix} -4 \\ -3 \\ b \end{pmatrix}$	[1 mark]

14 (b) Show that *ABCD* is a parallelogram, but not a rhombus.

$$\overrightarrow{BC} = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}, \overrightarrow{AD} = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}, \overrightarrow{DC} = \begin{pmatrix} -4 \\ -3 \\ 6 \end{pmatrix}$$
 [5 marks]

$$|BC| = \sqrt{1^2 + 5^2 + (-1)^2} = 3\sqrt{3}$$

$$|DC| = \sqrt{(-4)^2 + (-3)^2 + 6^2} = \sqrt{61}$$

<u></u>	3/3	So	we h	ione
two pair	s of	paralle	Sĩo	les
		distinct		
1			J	,

<u>=</u>	ABCD	is a parall	elogrami
		chombus.	7

A driver is road-testing two minibuses, A and B, for a taxi company.

The performance of each minibus along a straight track is compared.

A flag is dropped to indicate the start of the test.

Each minibus starts from rest.

The acceleration in $m s^{-2}$ of each minibus is modelled as a function of time, t seconds, after the flag is dropped:

The acceleration of A = $0.138 t^2$ The acceleration of B = $0.024 t^3$

15 (a) Find the time taken for A to travel 100 metres.

Give your answer to four significant figures.

[4 marks]

$$V = \int 0.138t^2 dt$$

= 0.046t³ +c

$$S = \int_{0.046t^3}^{0.046t^3} dt$$

= 0.0115t⁴ + k

$$t=0, s=0 \Rightarrow k=0.$$

Question 15 continues on the next page

15 (b)	The company decides to buy the minibus which travels 100 metres in the shortest time.
--------	---

Determine which minibus should be bought.

[4 marks]

$$S = \int 0.006t^{\dagger} dt$$

$$= 0.0012t^5 + R$$

The models assume that both minibuses start moving immediately when t=0In light of this, explain why the company may, in reality, make the wrong decision.

[1 mark]

The drivers' reaction times may

not be the same.

16 In this question use $g = 9.81 \,\mathrm{m \, s^{-2}}$

A particle is projected with an initial speed u, at an angle of 35° above the horizontal.

It lands at a point 10 metres vertically below its starting position.

The particle takes 1.5 seconds to reach the highest point of its trajectory.

16 (a) Find *u*.

[3 marks]

V=0, Uvert = usin35°

Q = usin35° - (9.81 x1.5)

=> u= 25.7 ms

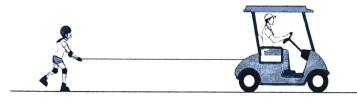
16 (b) Find the total time that the particle is in flight.

[3 marks]

S= ut + = at2

S=-10, u= 25-7sin35°, a= 9.8 loo

 $-10 = (25.781n35) + + (\frac{1}{2} \times 9.81 + \frac{1}{2})$


4.905t2 + 14.74t +10=0.

t= -14.74 + \(\frac{14.74^2 - (4 \times 4.905 \times \)}{2 3.575.

9.8

Turn over ▶

A buggy is pulling a roller-skater, in a straight line along a horizontal road, by means
of a connecting rope as shown in the diagram.

The combined mass of the buggy and driver is 410 kg A driving force of 300 N and a total resistance force of 140 N act on the buggy.

The mass of the roller-skater is 72 kg A total resistance force of *R* newtons acts on the roller-skater.

The buggy and the roller-skater have an acceleration of $0.2\,\mathrm{m\,s^{-2}}$

17 (a) (i)	Find R.		(410+72)	[2
	_300N -	140N - 1	$(410 + 72)$ $2 = 482 \text{kg} \times 0.2 \text{ms}^{-2}$	[3 marks]
	= 2 R	= 63-6 N	,	

17 (a) (ii)	Find the tension in the rope.					
	T-R=F=ma					
	$T - 63.6N = 72 \times 0.2$					
	= 78N					
17 (b)	State a necessary assumption that you have made.					
	Rope is horizontal, no force is used vertically.					

Question 17 continues on the next page

17 (c) The roller-skater releases the rope at a point A, when she reaches a speed of 6 m s⁻¹

She continues to move forward, experiencing the same resistance force.

The driver notices a change in motion of the buggy, and brings it to rest at a distance of 20 m from A.

17 (c) (i) Determine whether the roller-skater will stop before reaching the stationary buggy.

Fully justify your answer.

[5 marks]

$$V^2 = u^2 + 2as$$

$$u=6$$
, $v=0$, $a=-0.883$.

$$S = -36$$

$$2x-0.883 = 20.4m$$
.

20.4 720

therefore, the skater will hit

the buggy.

Do not write outside the box

17 (c) (ii)	Explain the change in motion that the driver noticed.						
		[2 marks]					
	There	is no	tension	from	the	shater	
	holding	the	rope,	SO	the		
	<u>drîver</u>	NÃN	notice	an	Inco	ease	
		accele	ration.				

END OF QUESTIONS

Do not write outside the box There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright @ 2018 AQA and its licensors. All rights reserved.

