Volume of 3D Shapes Mark Scheme		
1	$3 \times 12 \times 16=576 \mathrm{~cm}^{3}$	[1]
2	$\text { Volume }=\frac{a^{2} h}{3}=\frac{5^{2} \times 12}{3}$	[1] Substitution of values
	Volume $=100 \mathrm{~m}^{3}$	[1] Correct answer
3(a)	$4 \times 4=16$ $2 \times 3=6$ $6 \mathrm{~cm}^{2}$ 2 cm $16 \mathrm{~cm}^{2}$ 4 cm	[1] Correct method
	Area of Cross section $=16+6=22 \mathrm{~cm}^{2}$	[1] Correct answer
3(b)	$\begin{aligned} \text { Volume }= & \text { area of cross section } \times \text { length } \\ & =22 \times 3=66 \mathrm{~cm}^{3} \end{aligned}$	[1] Substitution of values
4	$\begin{gathered} \text { Volume }=\pi r^{2} h \\ \text { Volume }=\pi \times 4.5^{2} \times 2=127.23 \mathrm{~cm}^{3} \end{gathered}$	[1] Substitution of values
	$127.23 \mathrm{~cm}^{3}$	[1] Correct answer
5	Volume of sphere $=\frac{4}{3} \pi r^{3}$	[1] Substitution of values
	Volume $=\frac{4}{3} \times \pi \times 4^{3}=\frac{256 \pi}{3}$	[1] Correct answer
6	Substituting these values into the formula to find h : $\begin{aligned} & 1500=8^{2} \pi h \\ & 1500=64 \pi h \end{aligned}$	[1] Substitution of values
	$h=\frac{1500}{64 \pi}=7.46(2 \mathrm{dp})$	[1] Rearranging to find h
	The water reaches 7.46 cm from the base of the cylinder.	[1] Correct answer

7	$\begin{aligned} & \frac{1}{3} \times h \times \pi r^{2} \\ & h=10 r=3 \end{aligned}$	[1] Correct volume formula
	$\frac{1}{3} \times 10 \times \pi \times 3^{2}=\frac{1}{3} \times 90 \pi=30 \pi$	[1] Substitution of values
	$\text { Volume }=\frac{\frac{4}{3} \times \pi \times 3^{3}}{2}=\frac{108 \pi}{6}=18 \pi$	[1] Volume of hemi-sphere
	$18 \pi+30 \pi=48 \pi \mathrm{~cm}^{3}$	[1] Correct answer
8	$\begin{aligned} & \text { Volume }=x^{2} \frac{3 h}{3} \\ & \text { Volume }=x^{2} h \end{aligned}$	[1] Volume of larger pyramid
	$\begin{gathered} \text { Volume }=\left(\frac{2 x}{3}\right)^{2} \times \frac{2 h}{3} \\ \text { Volume }=\frac{4 x^{2}}{9} \times \frac{2 h}{3}=\frac{8 x^{2} h}{27} \\ \text { Volume of water } \\ =\text { Larger Pyramid }- \text { Smaller Pyramid } \end{gathered}$	[1] Volume of smaller pyramid
	$\begin{aligned} & \text { Water volume }=x^{2} h-\frac{8 x^{2} h}{27}=\frac{19 x^{2} h}{27} \\ & \text { Proportion filled } \\ & =\text { Water volume } \div \text { Larger pyramid } \\ & \frac{19 x^{2} h}{27} \div x^{2} h \end{aligned}$	[1] Smaller volume divided by larger volume
	$\frac{19}{27}$	[1] Correct answer simplified

