| Vectors Mark Scheme |  |  |
| :---: | :---: | :---: |
| 1(a) | $2 \boldsymbol{a}+\boldsymbol{b}$ | [1] Vector representing $M$ to $L$ |
| 1(b) | $\frac{1}{2}(2 a+b)=a+\frac{b}{2}$ | [1] Vector representing $M$ to $P$ |
| 1(c) | $\overrightarrow{M N}=4 \overrightarrow{M P}=4\left(\boldsymbol{a}+\frac{\boldsymbol{b}}{2}\right)=4 \boldsymbol{a}+2 \boldsymbol{b}$ | [1] Vector representing $M$ to $N$ |
| 2 | $\overrightarrow{G F}=3 \boldsymbol{a}-\boldsymbol{a}+5 \boldsymbol{b}+4 \boldsymbol{b}$ | [1] Vector representing $G$ to $F$ which is the sum of $G$ to $E$ and $E$ to $F$ |
|  | $\overrightarrow{G F}=2 \boldsymbol{a}+9 \boldsymbol{b}$ | [1] Vector representing $G$ to $F$ |
|  | $\overrightarrow{G H}=3(2 \boldsymbol{a}+9 \boldsymbol{b})=6 \boldsymbol{a}+27 \boldsymbol{b}$ | [1] Vector representing $G$ to $H$ which is 3 times $G$ to $F$ |
| 3 | $\overrightarrow{F C}=\frac{\boldsymbol{a}}{2}$ | [1] Vector representing $F$ to $C$ |
|  | $\overrightarrow{B E}=\frac{3}{4} \boldsymbol{a}$ | [1] Vector representing $B$ to $E$ |
|  | $\overrightarrow{F E}=\frac{5}{4} \boldsymbol{a}-\boldsymbol{b}$ | $[1] \overrightarrow{F E}=\overrightarrow{F C}+\overrightarrow{C B}+\overrightarrow{B E}$ |
| 4(a) | $\overrightarrow{L M}=-\mathbf{a} \boldsymbol{a}, \quad \overrightarrow{M N}=2 \boldsymbol{a}+\mathbf{2 b}, \quad \overrightarrow{N K}=3 \boldsymbol{a}+\boldsymbol{b}$. | [1] $\overrightarrow{L K}=\overrightarrow{L M}+\overrightarrow{M N}+\overrightarrow{N K}$ |
|  | $\begin{gathered} \overrightarrow{L K}=-2 \boldsymbol{a}+2 \boldsymbol{a}+2 \boldsymbol{b}+3 \boldsymbol{a}+\boldsymbol{b} \\ \overrightarrow{L K}=3 \boldsymbol{a}+3 \boldsymbol{b} \end{gathered}$ | [1] Vector representing $L$ to $K$ in its simplest form |
| 4(b) | $\overrightarrow{L P}=\frac{1}{3}(3 \boldsymbol{a}+3 \boldsymbol{b})$ | [1] Vector representing L to $P$ |
|  | $\overrightarrow{L P}=\boldsymbol{a}+\boldsymbol{b}$ | [1] Simplifying |
|  | $\overrightarrow{M P}=\overrightarrow{M L}+\overrightarrow{L P}=2 \boldsymbol{a}+\boldsymbol{a}+\boldsymbol{b}$ | [1] Vector representing $M$ to $P$ |
|  | $\overrightarrow{M P}=3 \boldsymbol{a}+\boldsymbol{b}=\overrightarrow{N K}$ | [1] Showing $M$ to $P$ is the same as $N$ to $K$ |
| 5(a) | $-a+b$ | [1] Vector representing $B$ to $C$ |
| 5(b) | $-2 a$ | [1] Vector representing $D$ to $E$ |
| 5(c) | $-2 a+b$ | [1] Vector representing $D$ to $E$ |
| 5(d) | $a+b$ | [1] Vector representing $D$ to $E$ |
| 6 | $\overrightarrow{D A}=4 \boldsymbol{b}$ | [1] Magnitude of 4 |
|  | $\overrightarrow{B E}=2 \boldsymbol{a}$ | [1] Vector representing $B$ to $E$ |
|  | $\therefore \overrightarrow{A E}=5 \boldsymbol{a}$ | [1] Vector representing $A$ to $E$ |
|  | $\overrightarrow{D E}=4 \boldsymbol{b}+5 \boldsymbol{a}$ | [1] Vector representing $D$ to $E$ |
|  |  |  |


| 7(a) | $-a+b$ | [1] Vector representing $B$ to $C$ |
| :---: | :---: | :---: |
| 7(b) | $\overrightarrow{(A C)}=\overrightarrow{(C E)}=b$ | [1] Vector representing $C$ to $E$ |
|  | $\overrightarrow{(D E)}=\frac{1}{4} \overrightarrow{(C E)}=\frac{1}{4} b$ | [1] Vector representing $D$ to $E$ |
|  | $\overrightarrow{(C D)}=\overrightarrow{(C E)}-\overrightarrow{(D E)}=b-\frac{1}{4} b=\frac{3}{4} b$ | [1] Vector representing $C$ to $D$ |
|  | $\overrightarrow{(D B)}=\overrightarrow{(D C)}+\overrightarrow{(C B)}=-\frac{3}{4} b-b+a=-\frac{7}{4} b+a$ | [1] Vector representing $D$ to $B$ |
| 8 | $\overrightarrow{B C}=-2 \boldsymbol{a}+3 \boldsymbol{b}$ | [1] Vector representing $B$ to $C$ |
|  | $\overrightarrow{B D}=-\frac{\boldsymbol{a}}{2}+\frac{3}{4} \boldsymbol{b}$ | [1] Vector representing $B$ to $D$ |
|  | $\overrightarrow{A D}=2 \boldsymbol{a}-\frac{\boldsymbol{a}}{2}+\frac{3}{4} \boldsymbol{b}=\frac{3}{2} \boldsymbol{a}+\frac{3}{4} \boldsymbol{b}$ | [1] Vector representing $A$ to $D$ |
|  | $\overrightarrow{A E}=\frac{1}{2}\left(\frac{3}{2} \boldsymbol{a}+\frac{3}{4} \boldsymbol{b}\right)$ | [1] Vector representing $A$ to $E$ |
|  | $=\frac{3}{4} \boldsymbol{a}+\frac{3}{8} \boldsymbol{b}=\frac{3}{4}\left(\boldsymbol{a}+\frac{\boldsymbol{b}}{2}\right)$ | [1] Simplification not required |
| 9(a) | $2 a-3 b$ | [1] $\overrightarrow{D C}=\overrightarrow{D A}+\overrightarrow{A C}$ |
| 9(b) | $\begin{gathered} A D: B E: C F=3: 2: 2 \\ A D: B E: C F=3 b: 2 b: 2 b \\ C F=2 b \end{gathered}$ | [1] Ratio finds $\overrightarrow{F C}$ |
|  | $\begin{aligned} \overrightarrow{(F D)}= & \overrightarrow{(F C)}+\overrightarrow{(C B)}+\overrightarrow{(B A)}+\overrightarrow{(A D)} \\ & =-2 b-a-a+3 b \\ & =-2 a+b \end{aligned}$ | [1] Final answer |
| 9(c) | $\begin{aligned} \overrightarrow{(D E)} & =-3 b+a+2 b \\ & =a-b \end{aligned}$ | [1] Vector representing $D$ to $E$ |
|  | $\overrightarrow{(E X)}=x \overrightarrow{(D E)}$ <br> Need 1 lot of $\overrightarrow{(E X)}$ to reach $C F$, and gives: $\overrightarrow{(C X)}=\overrightarrow{(X F)}=b$ | [1] Comparison |
|  | $C X: X F=1: 1$ | [1] Correct Ratio |
|  |  |  |


| 10 | $\begin{gathered} \overrightarrow{(A D)} \cdot \overrightarrow{:(D Y):} \cdot \overrightarrow{(Y C)}=1: 1: 1 \\ \begin{array}{c} (A D) \end{array}=\overline{(D Y)}=\overline{(Y C)}=a \\ \overrightarrow{(B C)}=\overrightarrow{(B D)}+\overrightarrow{(D Y)}+\overrightarrow{(Y C)} \\ =-(3 b-a)+a+a \\ =a-3 b+a+a \\ =3 a-3 b \\ =3(a-b) \end{gathered}$ | [1] Find vector $B$ to $C$ |
| :---: | :---: | :---: |
|  | $\begin{gathered} \overrightarrow{(A B)}=\overrightarrow{(A D)}+\overrightarrow{(D B)} \\ =a+3 b-a \\ =3 b \\ \overrightarrow{(A X):} \overline{(X B)}=2: 1 \\ \overline{(A X)}=2 b \end{gathered}$ | [1] Find vector $A$ to $X$ |
|  | $\begin{aligned} \overrightarrow{(X Y)}=\overrightarrow{(X A)}+ & \overrightarrow{(A D)}+\overrightarrow{(D Y)}=-2 b+a+a \\ & =2 a-2 b \\ & =2(a-b) \end{aligned}$ <br> $B C$ is a multiply of $X Y$, so they are going in the same direction | [1] Find vector $X$ to $Y$ |

