Vectors Mark Scheme		
1(a)	2a + b	[1] Vector representing <i>M</i> to <i>L</i>
1(b)	$\frac{1}{2}(2\boldsymbol{a}+\boldsymbol{b})=\boldsymbol{a}+\frac{\boldsymbol{b}}{2}$	[1] Vector representing <i>M</i> to <i>P</i>
1(c)	$\overrightarrow{MN} = 4\overrightarrow{MP} = 4\left(\boldsymbol{a} + \frac{\boldsymbol{b}}{2}\right) = 4\boldsymbol{a} + 2\boldsymbol{b}$	[1] Vector representing <i>M</i> to <i>N</i>
2	$\overrightarrow{GF} = 3\boldsymbol{a} - \boldsymbol{a} + 5\boldsymbol{b} + 4\boldsymbol{b}$	[1] Vector representing G to F which is the sum of G to E and E to F
	$\overrightarrow{GF} = 2\boldsymbol{a} + 9\boldsymbol{b}$	[1] Vector representing G to F
	$\overrightarrow{GH} = 3(2\boldsymbol{a} + 9\boldsymbol{b}) = 6\boldsymbol{a} + 27\boldsymbol{b}$	[1] Vector representing G to H which is 3 times G to F
3	$\overrightarrow{FC} = \frac{a}{2}$	[1] Vector representing F to C
	$\overrightarrow{BE} = \frac{3}{4}a$	[1] Vector representing <i>B</i> to <i>E</i>
	$\overrightarrow{FE} = \frac{5}{4}a - b$	$[1] \overrightarrow{FE} = \overrightarrow{FC} + \overrightarrow{CB} + \overrightarrow{BE}$
4(a)	$\overrightarrow{LM} = -2a$, $\overrightarrow{MN} = 2a + 2b$, $\overrightarrow{NK} = 3a + b$.	$[1] \overrightarrow{LK} = \overrightarrow{LM} + \overrightarrow{MN} + \overrightarrow{NK}$
	$\overrightarrow{LK} = -2\mathbf{a} + 2\mathbf{a} + 2\mathbf{b} + 3\mathbf{a} + \mathbf{b}$ $\overrightarrow{LK} = 3\mathbf{a} + 3\mathbf{b}$	[1] Vector representing L to K in its simplest form
4(b)	$\overrightarrow{LP} = \frac{1}{3}(3\boldsymbol{a} + 3\boldsymbol{b})$	[1] Vector representing <i>L</i> to <i>P</i>
	$\overrightarrow{LP} = a + b$	[1] Simplifying
	$\overrightarrow{MP} = \overrightarrow{ML} + \overrightarrow{LP} = 2a + a + b$	[1] Vector representing <i>M</i> to <i>P</i>
	$\overrightarrow{MP} = 3\boldsymbol{a} + \boldsymbol{b} = \overrightarrow{NK}$	[1] Showing <i>M</i> to <i>P</i> is the same as <i>N</i> to <i>K</i>
5(a)	-a+b	[1] Vector representing B to C
5(b)	-2a	[1] Vector representing D to E
5(c)	-2a + b	[1] Vector representing D to E
5(d)	a + b	[1] Vector representing D to E
6	$\overrightarrow{DA} = 4\mathbf{b}$	[1] Magnitude of 4
	$\overrightarrow{BE} = 2a$	[1] Vector representing <i>B</i> to <i>E</i>
	$\therefore \overrightarrow{AE} = 5a$	[1] Vector representing A to E
	$\overrightarrow{DE} = 4\mathbf{b} + 5\mathbf{a}$	[1] Vector representing D to E

7(a)	-a+b	[1] Vector representing <i>B</i> to <i>C</i>
7(b)	$\overrightarrow{(AC)} = \overrightarrow{(CE)} = b$	[1] Vector representing C to E
	$\overrightarrow{(DE)} = \frac{1}{4}\overrightarrow{(CE)} = \frac{1}{4}b$	[1] Vector representing D to E
	$\overrightarrow{(CD)} = \overrightarrow{(CE)} - \overrightarrow{(DE)} = b - \frac{1}{4}b = \frac{3}{4}b$	[1] Vector representing C to D
	$\overrightarrow{(DB)} = \overrightarrow{(DC)} + \overrightarrow{(CB)} = -\frac{3}{4}b - b + a = -\frac{7}{4}b + a$	[1] Vector representing D to B
8	$\overrightarrow{BC} = -2a + 3b$	[1] Vector representing B to C
	$\overrightarrow{BD} = -\frac{a}{2} + \frac{3}{4}b$	[1] Vector representing B to D
	$\overrightarrow{AD} = 2\boldsymbol{a} - \frac{\boldsymbol{a}}{2} + \frac{3}{4}\boldsymbol{b} = \frac{3}{2}\boldsymbol{a} + \frac{3}{4}\boldsymbol{b}$	[1] Vector representing A to D
	$\overrightarrow{AE} = \frac{1}{2}\left(\frac{3}{2}\boldsymbol{a} + \frac{3}{4}\boldsymbol{b}\right)$	[1] Vector representing A to E
	$=\frac{3}{4}a + \frac{3}{8}b = \frac{3}{4}(a + \frac{b}{2})$	[1] Simplification not required
9(a)	2a - 3b	$[1] \overrightarrow{DC} = \overrightarrow{DA} + \overrightarrow{AC}$
9(b)	AD:BE:CF = 3:2:2 $AD:BE:CF = 3b:2b:2b$ $CF = 2b$	[1] Ratio finds \overrightarrow{FC}
	$\overrightarrow{(FD)} = \overrightarrow{(FC)} + \overrightarrow{(CB)} + \overrightarrow{(BA)} + \overrightarrow{(AD)}$ $= -2b - a - a + 3b$ $= -2a + b$	[1] Final answer
9(c)	$\overrightarrow{(DE)} = -3b + a + 2b$ $= a - b$	[1] Vector representing D to E
	$\overrightarrow{(EX)} = x (\overrightarrow{DE})$ Need 1 lot of $\overrightarrow{(EX)}$ to reach <i>CF</i> , and gives:	[1] Comparison
	$\overrightarrow{(CX)} = \overrightarrow{(XF)} = b$	
	CX: XF = 1:1	[1] Correct Ratio

Turn over ►

10	$\overrightarrow{(AD)}: \overrightarrow{(DY)}: \overrightarrow{(YC)} = 1: 1: 1$ $\overrightarrow{(AD)} = \overrightarrow{(DY)} = \overrightarrow{(YC)} = a$ $\overrightarrow{(BC)} = \overrightarrow{(BD)} + \overrightarrow{(DY)} + \overrightarrow{(YC)}$ $= -(3b - a) + a + a$ $= a - 3b + a + a$ $= 3a - 3b$ $= 3(a - b)$	[1] Find vector <i>B</i> to <i>C</i>
	$\overrightarrow{(AB)} = \overrightarrow{(AD)} + \overrightarrow{(DB)}$ $= a + 3b - a$ $= 3b$ $\overrightarrow{(AX)}: \overrightarrow{(XB)} = 2:1$ $\overrightarrow{(AX)} = 2b$	[1] Find vector <i>A</i> to <i>X</i>
	$\overrightarrow{(XY)} = \overrightarrow{(XA)} + \overrightarrow{(AD)} + \overrightarrow{(DY)} = -2b + a + a$ $= 2a - 2b$ $= 2(a - b)$ BC is a multiply of XY, so they are going in the same direction	[1] Find vector <i>X</i> to <i>Y</i>

END