Upper and Lower Bounds Mark Scheme		
1(a)	lower bound $=5.5 \mathrm{~cm}$	[1]
	upper bound $=6.5 \mathrm{~cm}$	[1]
1(b)	lower bound $=2.15 \mathrm{~kg}$	[1]
	upper bound $=2.25 \mathrm{~kg}$	[1]
1(c)	55 m	[1] Answer to the nearest meter
2(a)	max. area: $4.15 \mathrm{~m} \times 3.25 \mathrm{~m}=13.4875 \mathrm{~m}^{2}$	[1] Correct calculation
	min area: $4.05 \mathrm{~m} \times 3.15=12.7575 \mathrm{~m}^{2}$	[1] Correct calculation
	Max area $=13.5 \mathrm{~m}^{2}, \mathrm{Min}$ area $=12.8 \mathrm{~m}^{2}$	[1] Both correct to $1 \mathrm{~d} . \mathrm{p}$.
3	No	[1] Only award with correct explanation
	Min speed $=\frac{225}{4}$, Max Speed $=\frac{235}{4}$	[1] Correct use of formula and bounds (Accept method using upper and lower bounds of Time to show Sarah is wrong.)
	The average speed is between 56.25 and 58.75 mph	[1] Correct final answer
4(a)	Lower bound $=3.415 \mathrm{~m}$ Upper bound $=3.425 \mathrm{~m}$	[1] Upper and lower bound of x
	$\begin{aligned} & y \\ & \text { Lower bound }=0.915 \mathrm{~m} \\ & \text { Upper bound }=0.925 \mathrm{~m} \end{aligned}$	[1] Upper and lower bound of y
4(b)	$z=\frac{1}{\min .} \begin{gathered} \\ 3.425 \\ 0.915=1.207 \text { (to } 3 \mathrm{~d} . \mathrm{p} \text {) } \end{gathered}$	[1] Lower bound of z
	max. $z=\frac{1}{3.415}+0.925=1.218$ (to $3 \mathrm{~d} . \mathrm{p}$.)	[1] Upper bound of z
5(a)	Upper bound $=9.05 \times 8.55 \times 18.25$	[1] Correct calculation
	$=1412.14 \mathrm{~cm}^{3}$	[1] Volume to $2 \mathrm{~d} . \mathrm{p}$.
5(b)	Upper bound the water $=1375 \mathrm{~cm}^{3}$	[1] Upper bound
	Lower bound of the bucket $8.95 \times 8.45 \times 18.15=1372.63 \mathrm{~cm}^{3}$	[1] Lower bound
	No, the container could overflow. The upper bound of water is greater then the lower bound of the container volume.	[1] Correct conclusion based on workings

6(a)	12.35 m	[1] Lower bound for distance
$\mathbf{6 (b)}$	Correct use of $g=9.85$	[1] Implicit in question
	$t=\sqrt{\frac{2 \times 12.35}{9.85}}=1.584$	[1] Correct calculation
	$t=1.58$ seconds	[1] Min. time to 2 d.p.

END

