Types of Numbers Mark Scheme		
1(a)	$\sqrt{81}=9, \sqrt{144}=12$, and 0	[1]
1(b)	π and $\sqrt{1000}$	[1] Do not accept $\sqrt{-2}$
2(a)	$m=36$	[1] By trial and error or otherwise
2(b)	$\sqrt{2}$ and $\sqrt{3}$	[1] Accept any sensible answer
3(a)	$2 \sqrt{4}=\sqrt{4 \times 4}=\sqrt{16}=4$	[1] Selecting $2 \sqrt{4}$
3(b)	$\sqrt{7} \times \sqrt{7}=7$	[1] Selecting $\sqrt{7}$ and $\sqrt{7}$
4(a)	e.g. $x= \pm 1, y=3$ or $x= \pm 2, y=2$	[1] Accept any reasonable answer
4(b)	eg. $x=1, y=-\frac{1}{3}$ or $x=0, y=\frac{5}{3}$	[1] Accept any reasonable answer
5(a)	$13.6-4.5-3=x$	[1] Correct calculation using perimeter
	$x=6.1 \mathrm{~cm}$	[1] Correct length
5(b)	A rational number is a number that can be written as a fraction of two integers	[1] Reasoning
	Hence, x is rational.	[1] Correct conclusion
6	A: Never True	[1] Rational + Irrational $=$ Irrational
	B: Always True	[1] e.g. $1+2=3$
	C: Sometimes True	[1] e.g. $1.5 \times 2=3$
	D: Sometimes True	[1] e.g. $\sqrt{2} \times 0=0$
	E: Sometimes True	$[1]$ eg. $\sqrt{2}+(1-\sqrt{2})=1$

