

4(a)	$y=(x+2)^{2}+3$	$[1]$
	$x=-2, y=3$	$[1]$
4(b)	$y=3\left(x^{2}+12 x+33\right)$	$[1]$
	$x=3\left[(x+6)^{2}-3\right]=3(x+6)^{2}-9$	$[1]$
4(c)	$y=2\left(x^{2}+\frac{7}{2} x-5\right)$	$[1]$
	$=2\left[\left(x+\frac{7}{4}\right)^{2}-\frac{129}{16}\right]=2\left(x+\frac{7}{4}\right)^{2}-\frac{129}{8}$	$[1]$
$x=-\frac{7}{4}, y=-\frac{129}{8}$	$[1]$	

5(a)		[1] Smooth connecting curve using line of symmetry
5(b)	$x=-1, y=2 \pm 0.25$	[1]
6(a)	$f g(x)=x^{2}-4$	[1] Correct function given
	Graph of x^{2} has turning point $(0,0)$ $f g(x)=x^{2}-4$ is the graph of x^{2} but moved down 4, so that is how the turning point has moved too. The x stays the same, but the y goes down by 4 . $x=0, y=-4$	[1]
6(b)	$g f(x)=(x-4)^{2}$	[1] Correct function given
	Graph of x^{2} has turning point $(0,0)$ $g f(x)=(x-4)^{2}$ is the graph of x^{2} but moved right 4, so that is how the turning point has moved too. The x increased by 4 , but the y stays the same. $x=4, y=0$	[1]
6(c)	The turning point of $f g(x)$ is where $f(x)$ intercepts the y-axis. The turning point of $g f(x)$ is where $f(x)$ intercepts the x-axis.	[1] For either or both correct comments

