Proof (Higher) Mark Scheme		
1(a)	$4(2 x-3)-2(2 x+9)=8 x-12-4 x-18$	[1] Expanding brackets
	$\begin{gathered} =8 x-4 x-12-18 \\ \equiv 4 x-30 \end{gathered}$	[1] Grouping similar terms
1(b)	$\begin{gathered} (n-1)^{2}-(n-2)^{2} \\ \left(n^{2}-2 n+1\right)-\left(n^{2}-4 n+4\right) \end{gathered}$	[1] Expanding brackets
	$\begin{gathered} =n^{2}-n^{2}-2 n+4 n+1-4 \\ =2 n-3 \end{gathered}$	[1] Grouping similar terms
1(c)	$\begin{gathered} \\ \\ =(n+2)(n+2)-3(n+4) \\ =n^{2}+2 n+2 n+4-3 n-12 \end{gathered}$	[1] Expanding brackets
	$\begin{gathered} =n^{2}+n-12+4 \\ \equiv(n+4)(n-3)+4 \end{gathered}$	[1] Grouping similar terms
1(d)	$=3\left(n^{2}+2 n-3\right)-3+3 n$	[1] Expanding brackets
	$\begin{aligned} & =3 n^{2}+9 n-12 \\ & \equiv(3 n-3)(n+4) \end{aligned}$	[1] Grouping and cancelling similar terms
2(a)	$=3 n^{2}+9 n+n+3-3 n^{2}-7 n$	[1] Expanding brackets
	$\begin{gathered} =3 n+3 \\ =3(n+1) \end{gathered}$	[1] Grouping and cancelling similar terms
2(b)	$n^{2}+6 n+9-3 n-4$	[1] Expanding brackets
	$\begin{gathered} =n^{2}+3 n+5 \\ (n+1)(n+2)+3 \end{gathered}$	[1] Grouping and cancelling similar terms
2(c)	$=n^{2}-6 n+9-2 n-1$	[1] Expanding brackets
	$\begin{aligned} & =n^{2}-8 n+8 \\ & =(n-4)^{2}-8 \end{aligned}$	[1] Grouping and cancelling similar terms
3(a)	$2 n \times 2 m=4 n m$	[1] Let n and m be any integers so that $2 n$ and 2 m are both even numbers.
	$=2(2 \mathrm{~nm})$ which is even	[1] Answer as required
3(b)	$(2 n+1)(2 m+1)=4 n m+2 n+2 m+1$	[1] Let n and m be any integers so that $2 \mathrm{n}+1$ and $2 \mathrm{~m}+1$ are both odd numbers.
	$=2(2 n m+n+m)+1$ which is odd	[1] Answer as required
3(c)	$\begin{gathered} \\ \\ =(2 n+1)(2 n+3)(2 n+5) \\ = \\ \left(4 n^{2}+2 n+6 n+3\right)(2 n+5) \end{gathered}$	[1] Creation of correct algebraic expression
	$\begin{aligned} & \left(4 n^{2}+2 n+6 n+3\right)(2 n+5) \\ & =8 n^{3}+36 n^{2}+46 n+15 \end{aligned}$	[1] Expanding brackets
	$\begin{aligned} & =2\left(4 n^{3}+18 n^{2}+23 n+7\right)+1 \\ & \quad \text { simplifies to } 2(n)+1 \end{aligned}$	[1] Factorising to show its always odd

4(a)	$(2 n+1)+(2 m+1)+(2 p+1)$	[1] Creation of correct algebraic expression
	$\begin{gathered} =2(n+m+p+1)+1 \\ =2(x)+1 \end{gathered}$	[1] Factorising to show its always odd
4(b)	$(2 n+1)^{2}+(2 m+1)^{2}=4 n^{2}+4 n+1+4 m^{2}+4 m+1$	[1] Creation of correct algebraic expression and expanding brackets
	$2\left(2 n^{2}+2 m^{2}+2 n+2 m+1\right)$	[1] Factorising to show its always odd
4(c)	$(n+1)^{2}-n^{2}=n^{2}+2 n+1-n^{2}$	[1] Creation of correct algebraic expression and expanding brackets
	$=2 n+1$	[1] Simplifying to final answer
5(a)	$=n^{2}+3 n+3 n+9+3 n-n^{2}-3 n-12$	[1] Expanding brackets
	$\begin{gathered} =6 n-3 \\ =3(2 n-1) \end{gathered}$	[1] Grouping similar terms
5(b)	If a number is n, then the next number is $n+1$ The sum is therefore $n+n+1=2 n+1$	[1] Demonstration of logic
	By definition, $2 n$ is even, and so $2 n+1$ must be odd.	[1] Final explanation
5(c)	$(5 n)^{2}+(5 n+5)^{2}=25 n^{2}+25 n^{2}+25 n+25 n+25$	[1] Expanding brackets
	$=50 n^{2}+50 n+25$	[1] Grouping similar terms
6(a)	$2 n+(2 n+2)+(2 n+4)$	[1] Expanding brackets
	$=6 n+6=6(n+1)$	[1] Grouping similar terms and factorisation to show it is divisible by 6
6(b)	$=16 n^{2}+16 n+4-4 n^{2}-8 n-4$	[1] Expanding brackets
	$=12 n^{2}+8 n=4\left(3 n^{2}+2 n\right)$	[1] Grouping similar terms and factorisation to show multiple of 4
6(c)	$=4 n^{2}+12 n+9-4 n^{2}+12 n-9$	[1] Expanding brackets
	$=24 n=8(3 n)$	[1] Grouping similar terms and factorisation to show multiple of 8
7(a)	$(2 n)^{2}+(2 n+2)^{2}$	[1] Creation of correct algebraic expression
	$=4 n^{2}+4 n^{2}+8 n+4$	[1] Expanding brackets
	$=4\left(2 n^{2}+2 n+1\right)$	[1] Grouping similar terms and factorisation to show multiple of 4

7(b)	$(n+1)^{2}-n^{2}=n^{2}+2 n+1-n^{2}$				[1] Creation of correct algebraic expression	
	$=2 n+1$				[1] Accept same proof with $2 n-1$	
8(a)	$\begin{gathered} 7 x-(2 x+3)(x+2)=7 x-\left(2 x^{2}+4 x+3 x+6\right) \\ =-2 x^{2}-6=-\left(2 x^{2}+6\right) \end{gathered}$				[1] Expanding brackets and grouping similar terms	
	$=-\left(2 x^{2}+6\right)$				[1] Factorisation	
	$-\left(2 x^{2}+6\right)$ is always positive, so multiplying by a negative means that the answer is always negative, so Tom is correct.				[1] Suitable explanation of logic	
8(b)	Changing the +3 into $\mathrm{a}-3$ or +2 into a -2 would give a negative number when expanding the brackets but would then be made positive when multiplying by -1 .				[1]	
9(a)	$=(7 \times 2)^{20}-(7 \times 3)^{2}=7^{20} \times 2^{2}-7^{2} \times 3^{2}$				[1] Changing of powers	
	$=7\left(7^{19} \times 2^{2}-7 \times 3^{2}\right)$				[1] Factorisation with 7 taken out	
	A factor of 7 can be taken out, so the answer must be divisible by 7 , and therefore a multiple of 7 .				[1] Suitable explanation of logic	
9(b)	3^{60} is always odd, because you are multiplying odd numbers. Also 25 is odd. So the difference between two odd numbers, i.e. subtracting them, is always even.				[1] Suitable explanation of logic	
	$3^{60}-25$ is going to be even. All even numbers are divisible by 2 , so $3^{60}-25$ is not prime.				[1] Suitable explanation of logic	
10(a)	1 2 3 4 5 11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45 Consider the new square shown, $(44-33) \times(43-34)=11 \times 9=99$				[1] Any example shown	
10(b)	Taking the top left number as n, the other numbers can be written in terms of n.$\begin{gathered} (n+11-n) \times(n+10-(n+1)) \\ =11 \times(n+10-n-1)=11 \times 9 \\ =99 \end{gathered}$				$\begin{gathered} {[1]} \\ {[1]} \\ {[1]} \end{gathered}$	$n+1$ $n+11$

