Proof (Foundation) Mark Scheme		
1(a)	10x - 15	[1] Expand brackets
	10x - 15 - 2 10x - 17	[1] Collect like terms
1(b)	$n^2 - 4n + 4$	[1] Expand brackets
	$n^2 - 4n + 4 + 3$ $n^2 - 4n + 7$	[1] Collect like terms
1(c)	$x^2 + 2x + 1$	[1] Expand brackets
	$x^2 + 2x + 1 - x^2$	[1] Collect like terms
2(a)	5(3x-5) - 2(2x+9) = 15x - 25 - 4x - 18	[1] Expanding brackets
	= 15x - 4x - 25 - 18	[1] Grouping like terms
	$\equiv 11x - 43$	[1] Answer as required
2(b)	$(n-2)^2 - (n-5)^2$ = $n^2 - 2n - 2n + 4 - (n^2 - 5n - 5n + 25)$	[1] Expanding brackets
	$= n^2 - n^2 - 4n + 10n + 4 - 25$ = 6n - 21	[1] Grouping like terms
	$\equiv 3(2n-7)$	[1] Answer as required
2(c)	(n+2)(n+2) - 3(n+4) = $n^2 + 2n + 2n + 4 - 3n - 12$	[1] Expanding brackets
	$= n^2 + n - 12 + 4$	[1] Grouping like terms
	$\equiv (n+4)(n-3)+4$	[1] Answer as required
2(d)	3(n+3)(n-1) - 3(1-n)	
	$= 3(n^2 + 2n - 3) - 3 + 3n$	[1] Expanding brackets
	$= 3n^2 + 9n - 12$	[1] Grouping like terms
	$\equiv (3n-3)(n+4)$	[1] Answer as required
3(a)	(3n + 1)(n + 3) - n(3n + 7)	
	$= 3n^2 + 9n + n + 3 - 3n^2 - 7n$	[1] Expanding brackets
	= 3n + 3	[1] Grouping like terms
	= 3(n+1)	[1] Answer as required
3(b)	$(n + 3)^2 - (3n + 4)$	
	$= n^2 + 6n + 9 - 3n - 4$	[1] Expanding brackets
	$= n^2 + 3n + 5$	[1] Grouping like terms
	= (n + 1)(n + 2) + 3	[1] Answer as required

Turn over ►

3(c)	$(n-3)^2 - (2n+1)$	
	$= n^2 - 6n + 9 - 2n - 1$	[1] Expanding brackets
	$= n^2 - 8n + 8$	[1] Grouping like terms
	$= (n-4)^2 - 8$	[1] Answer as required
3(d)	$\frac{1}{8}(4n + 1)(n + 8) - \frac{1}{8}n(4n + 1)$	
	$\frac{1}{8}(4n^2 + n + 32n + 8) - \frac{1}{8}(4n^2 + n)$	[1] Expanding brackets
	$\left(\frac{1}{2}n^2 + \frac{33}{8}n + 1\right) - \left(\frac{1}{2}n^2 + \frac{n}{8}\right)$	[1] Grouping like terms
	= 4n + 1	[1] Answer as required
4	$2n \times 2m = 4nm$	[1] Let n and m be any integers so that 2n and 2m are both even numbers.
	= 2(2nm) which is even	[1] Final explanation
5	(2n+1)(2m+1) = 4nm + 2n + 2m + 1	[1] Let n and m be any integers so that 2n+1 and 2m+1 are both odd numbers.
	= 2(2nm + n + m) + 1 which is odd	[1] Final explanation
6	If a number is n , then the next number is $n + 1$	[1] Demonstration of this logic
	The sum is therefore $n + n + 1 = 2n + 1$	[1] Correct sum
	By definition, $2n$ is even, and so $2n + 1$ must be odd.	[1] Final explanation
7(a)	$7x - (2x + 3)(x + 2) = 7x - (2x^2 + 4x + 3x + 6)$	[1] Expanding brackets
	$= 7x - 2x^{2} - 7x - 6 = -2x^{2} - 6$ $= -(2x^{2} + 6)$	[1] Grouping like terms
	$(2x^2 + 6)$ is always positive, so multiplying by negative number means that the answer is always negative, so Tom is correct.	[1] Demonstration of this logic
7(b)	Changing the $+3$ into a -3 or $+2$ into a -2 would give a negative number when expanding the brackets but would then be made positive when multiplying by -1	[1] Correct logic used