Proof (Foundation) Mark Scheme		
1(a)	$10 x-15$	[1] Expand brackets
	$\begin{gathered} 10 x-15-2 \\ 10 x-17 \end{gathered}$	[1] Collect like terms
1(b)	$n^{2}-4 n+4$	[1] Expand brackets
	$\begin{gathered} n^{2}-4 n+4+3 \\ n^{2}-4 n+7 \end{gathered}$	[1] Collect like terms
1(c)	$x^{2}+2 x+1$	[1] Expand brackets
	$x^{2}+2 x+1-x^{2}$	[1] Collect like terms
2(a)	$5(3 x-5)-2(2 x+9)=15 x-25-4 x-18$	[1] Expanding brackets
	$=15 x-4 x-25-18$	[1] Grouping like terms
	$\equiv 11 x-43$	[1] Answer as required
2(b)	$\begin{gathered} (n-2)^{2}-(n-5)^{2} \\ =n^{2}-2 n-2 n+4-\left(n^{2}-5 n-5 n+25\right) \end{gathered}$	[1] Expanding brackets
	$\begin{aligned} =n^{2}-n^{2} & -4 n+10 n+4-25 \\ & =6 n-21 \end{aligned}$	[1] Grouping like terms
	$\equiv 3(2 n-7)$	[1] Answer as required
2(c)	$\begin{aligned} & (n+2)(n+2)-3(n+4) \\ = & n^{2}+2 n+2 n+4-3 n-12 \end{aligned}$	[1] Expanding brackets
	$=n^{2}+n-12+4$	[1] Grouping like terms
	$\equiv(n+4)(n-3)+4$	[1] Answer as required
2(d)	$3(n+3)(n-1)-3(1-n)$	
	$=3\left(n^{2}+2 n-3\right)-3+3 n$	[1] Expanding brackets
	$=3 n^{2}+9 n-12$	[1] Grouping like terms
	$\equiv(3 n-3)(n+4)$	[1] Answer as required
3(a)	$(3 n+1)(n+3)-n(3 n+7)$	
	$=3 n^{2}+9 n+n+3-3 n^{2}-7 n$	[1] Expanding brackets
	$=3 n+3$	[1] Grouping like terms
	$=3(n+1)$	[1] Answer as required
3(b)	$(n+3)^{2}-(3 n+4)$	
	$=n^{2}+6 n+9-3 n-4$	[1] Expanding brackets
	$=n^{2}+3 n+5$	[1] Grouping like terms
	$=(n+1)(n+2)+3$	[1] Answer as required

3(c)	$(n-3)^{2}-(2 n+1)$	
	$=n^{2}-6 n+9-2 n-1$	[1] Expanding brackets
	$=n^{2}-8 n+8$	[1] Grouping like terms
	$=(n-4)^{2}-8$	[1] Answer as required
3(d)	$\frac{1}{8}(4 n+1)(n+8)-\frac{1}{8} n(4 n+1)$	
	$\frac{1}{8}\left(4 n^{2}+n+32 n+8\right)-\frac{1}{8}\left(4 n^{2}+n\right)$	[1] Expanding brackets
	$\left(\frac{1}{2} n^{2}+\frac{33}{8} n+1\right)-\left(\frac{1}{2} n^{2}+\frac{n}{8}\right)$	[1] Grouping like terms
	$=4 n+1$	[1] Answer as required
4	$2 n \times 2 m=4 n m$	[1] Let n and m be any integers so that $2 n$ and $2 m$ are both even numbers.
	$=2(2 \mathrm{~nm})$ which is even	[1] Final explanation
5	$(2 n+1)(2 m+1)=4 n m+2 n+2 m+1$	[1] Let n and m be any integers so that $2 n+1$ and $2 m+1$ are both odd numbers.
	$=2(2 n m+n+m)+1$ which is odd	[1] Final explanation
6	If a number is n, then the next number is $n+1$	[1] Demonstration of this logic
	The sum is therefore $n+n+1=2 n+1$	[1] Correct sum
	By definition, $2 n$ is even, and so $2 n+1$ must be odd.	[1] Final explanation
7(a)	$7 x-(2 x+3)(x+2)=7 x-\left(2 x^{2}+4 x+3 x+6\right)$	[1] Expanding brackets
	$\begin{gathered} =7 x-2 x^{2}-7 x-6=-2 x^{2}-6 \\ =-\left(2 x^{2}+6\right) \end{gathered}$	[1] Grouping like terms
	$\left(2 x^{2}+6\right)$ is always positive, so multiplying by negative number means that the answer is always negative, so Tom is correct.	[1] Demonstration of this logic
7(b)	Changing the +3 into $\mathrm{a}-3$ or +2 into a -2 would give a negative number when expanding the brackets but would then be made positive when multiplying by -1	[1] Correct logic used

