

GCSE MATHEMATICS AQA | Edexcel | OCR | WJEC

Proofs (Higher)

Please write clearly in block capitals

Forename:	
Surname:	

Materials

For this paper you must have:

mathematical instruments

You can use a calculator.

Instructions

- · Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- · The marks for questions are shown in brackets.
- You may ask for graph paper, tracing paper and more answer paper.
 These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

1	Show that the following statements are true:	
' 1(a)	3. Show that the following statements are true: $4(2x-3)-2(2x+9) \equiv 4x-30$	
		[2 marks]
	Answer	
1(b)	$(n-1)^2 - (n-2)^2 \equiv 2n - 3$	
		[2 marks]
	Answer	
1(c)	$(n+2)^2 - 3(n+4) \equiv (n+4)(n-3) + 4$	
		[2 marks]
	Answer	
1(d)	$3(n+3)(n-1) - 3(1-n) \equiv (3n-3)(n+4)$	[2 marks]
		[2 marks]
	Answer	
	Turn over for next question	

2		
2 2(a)	Show that the following statements are true, $(3n + 1)(n + 3) - n(3n + 7) \equiv 3(n + 1)$	
2 (a)	(3n+1)(n+3)-n(3n+7)=3(n+1)	[2 marks]
	A	
	Answer	
2(b)	$(n + 3)^2 - (3n + 4) \equiv (n + 1)(n + 2) + 3$	
		[2 marks]
	Answer	
2(c)	$(n-3)^2 - (2n+1) \equiv (n-4)^2 - 8$	
		[2 marks]
	Answer	

3(a)	Prove the product of two even numbers is always even.	[2 marks]
	Answer	
3(b)	Prove that the product of two odd numbers is always odd.	[2 marks]
	Answer	
3(c)	Prove the product of three consecutive odd numbers is odd.	[3 marks]
	Answer	
	GCSE Maths Revision Cards ◇ All major GCSE maths topics covered ◇ Higher and foundation ◇ All exam boards - AQA, OCR, Edexcel, WJEC Get them at mme.la/cards or scan the barcode	

4(a)	Prove algebraically that the sum of any three odd numbers is odd.	[2 marks]
	Answer	
4(b)	Prove algebraically that the sum of the squares of two odd integers is always even.	[2 marks]
	Answer	_
4(c)	Prove that when two consecutive integers are squared, that the difference is equal to the sum of the two consecutive integers.	[2 marks]
	Answer	
	Turn over for next question	

[2 marl
[2 mark
[2 marl
[2 mar
-

6(a)	Show algebraically that the sum of any 3 consecutive even numbers is always a divisible by 6.	
		[2 marks]
		_
	Answer	_
6(b)	Prove algebraically that $(4n+2)^2-(2n+2)^2$ is a multiple of 4 for all positive integers.	
		[2 marks]
		_
	Answer	_
6(c)	Prove algebraically that $(2n + 3)^2 - (2n - 3)^2$ is a multiple of 8 for all positive integers of n .	
		[2 marks]
		_
	Answer	_
	Turn over for next question	

7(a)	If $2n$ is always even for all positive integer values of n , prove algebraically that the sum of the squares of any two consecutive even numbers is always a multiple of 4 .	
		[3 marks]
		_
	Answer	_
7(b)	Prove algebraically that the difference between the squares of any two consecutive numbers is always an odd number.	
		[2 marks]
		_
	Answer	
	Turn over for next question	

	9	
8(a)	Tom says that $7x - (2x + 3)(x + 2)$ is always negative.	
	Is he correct? Explain your answer.	
		[3 marks]
	Answer	
8(b)	Change a single number in Tom's statement that would lead to a change in your conclusion.	
	Why is this the case?	
		[1 mark]
	Answer	_

GCSE Maths Practice Exam Papers

- Paper 1, 2, 3 and mark scheme in every set
- All exam boards AQA, OCR, Edexcel, WJEC

Get them at mme.la/papers or scan the barcode

9(a)	Show that the difference between 14^{20} and 21^2 is a multiple of 7.	
		[3 marks]
		_
		_
		_
		_
	Answer	
9(b)	Show that $3^{60} - 25$ is not a prime number.	
. ,		[2 marks]
		_
		_
		_
		_
		_
		_
	Answer	_
	- Tillowoli	
	Turn over for next question	

Part of a $10 \times 10 \ 1 - 100$ number grid is pictured below

1	2	3	4	5
11	12	13	14	15
21	22	23	24	25
31	32	33	34	35
41	42	43	44	45

A 2×2 square of numbers is selected.

The following operation is performed:

Difference of the leading diagonal × Difference of the other diagonal

$$(23-12) \times (22-13) = 11 \times 9 = 99$$

10(a) Verify that this is also the case for a different 2×2 square of numbers on the grid.

Г1	m	21	· ៤ 1
11	ш	аı	KI

Answer

10(b) Prove this result for all possible 2×2 squares on the grid.

[3	m	_			٠,
1.3	111	a	П	N.S	٠.

Answer

End of Questions