Proofs (Higher)

Please write clearly in block capitals

Forename:

Surname:

Materials

For this paper you must have:

- mathematical instruments

You can use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- You may ask for graph paper, tracing paper and more answer paper. These must be tagged securely to this answer book.

Advice

- In all calculations, show clearly how you work out your answer.

1 Show that the following statements are true:
1(a)

Answer

$$
4(2 x-3)-2(2 x+9) \equiv 4 x-30
$$

\qquad
\qquad
\qquad

1(b)

$$
(n-1)^{2}-(n-2)^{2} \equiv 2 n-3
$$

Answer \qquad

1(c)

$$
(n+2)^{2}-3(n+4) \equiv(n+4)(n-3)+4
$$

\qquad
\qquad
Answer \qquad

1(d)

$$
3(n+3)(n-1)-3(1-n) \equiv(3 n-3)(n+4)
$$

\qquad
\qquad
Answer \qquad

Turn over for next question

2 Show that the following statements are true,
2(a) $\quad(3 n+1)(n+3)-n(3 n+7) \equiv 3(n+1)$
\qquad

Answer

2(b)

$$
(n+3)^{2}-(3 n+4) \equiv(n+1)(n+2)+3
$$

Answer

\qquad

2(c)

$$
(n-3)^{2}-(2 n+1) \equiv(n-4)^{2}-8
$$

Answer \qquad
3(a) Prove the product of two even numbers is always even.

5(a) Prove that,

$$
(n+3)^{2}+n(3-n)-3(n+4)
$$

is a multiple of 3 for all integer values of n.
\qquad
\qquad
\qquad
Answer \qquad

5(b) Prove algebraically that the sum of two consecutive numbers is odd.
\qquad
\qquad
\qquad
Answer \qquad

5(c) Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10 .
\qquad
\qquad
\qquad
Answer \qquad

6(a) Show algebraically that the sum of any 3 consecutive even numbers is always a divisible by 6.
\qquad
\qquad
\qquad
Answer \qquad

6(b) Prove algebraically that $(4 n+2)^{2}-(2 n+2)^{2}$ is a multiple of 4 for all positive integers.
\qquad
\qquad
\qquad
Answer \qquad

6(c) Prove algebraically that $(2 n+3)^{2}-(2 n-3)^{2}$ is a multiple of 8 for all positive integers of n.
\qquad
\qquad
\qquad
Answer \qquad

Turn over for next question

7(a) If $2 n$ is always even for all positive integer values of n, prove algebraically that the sum of the squares of any two consecutive even numbers is always a multiple of 4 .
\qquad
\qquad
\qquad
Answer \qquad

7(b) Prove algebraically that the difference between the squares of any two consecutive numbers is always an odd number.
\qquad
\qquad
\qquad
Answer \qquad

8(a) Tom says that $7 x-(2 x+3)(x+2)$ is always negative.
Is he correct? Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

8(b) Change a single number in Tom's statement that would lead to a change in your conclusion.

Why is this the case?

Answer \qquad

GCSE Maths Practice Exam Papers

© GCSE Maths predicted papers and mark schemes
() Paper 1, 2, 3 and mark scheme in every set
© All exam boards - AQA, OCR, Edexcel, WJEC

Get them at mme.la/papers or scan the barcode \longrightarrow

9(a) Show that the difference between 14^{20} and 21^{2} is a multiple of 7.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer

9(b) Show that $3^{60}-25$ is not a prime number.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

Turn over for next question

10 Part of a $10 \times 101-100$ number grid is pictured below

1	2	3	4	5
11	12	13	14	15
21	22	23	24	25
31	32	33	34	35
41	42	43	44	45

A 2×2 square of numbers is selected.
The following operation is performed:
Difference of the leading diagonal \times Difference of the other diagonal

$$
(23-12) \times(22-13)=11 \times 9=99
$$

10(a) Verify that this is also the case for a different 2×2 square of numbers on the grid.

Answer \qquad

10(b) Prove this result for all possible 2×2 squares on the grid.
\qquad
\qquad
Answer \qquad

End of Questions

