(a) Tree Diagrams (Probability) Mark Scheme
(a) Maths Homework

Turn over

5(a)	$\text { Red Ball Red Ball } \frac{5}{11} \times \frac{4}{10}=\frac{20}{110}$	
	Completed tree diagram	[3]
5(b)	One red and one green ball are drawn $=\frac{30}{110}+\frac{30}{110}=\frac{60}{110}=\frac{6}{11}$	[2] a mark for working and one for answer
5(c)	Using answer from part (b), $\begin{gathered} P(\text { same colour })=1-P(\text { different colour }) \\ P(\text { same colour })=1-\frac{6}{11}=\frac{5}{11} \end{gathered}$	[1] Allow calculation of P (both red) and P(both green) and use of 'or rule' [1] Correct final answer
6	Probability of blue ball first: 8 blue balls and x balls in total $\frac{8}{x}$ Probability of choosing a green ball after a ball isn't replaced: 3 green balls $x-1$ balls left in the bag. $\frac{3}{x}$ Probabilities are independent, so multiply to find the probability of both happening, which is equal to $\frac{1}{10}$. $\begin{gathered} \frac{8}{x} \times \frac{3}{x-1}=\frac{1}{10} \\ \frac{24}{x(x-1)}=\frac{1}{10} \\ 240=x(x-1) \\ 240=x^{2}-x \\ x^{2}-x-240=0 \\ (x-16)(x+15)=0 \\ x=16 \text { or } x=-15 \end{gathered}$ Can't have a negative number of balls in a bag, so there are 16 in total.	[1] Blue and green probabilities given in algebra form. [1] Setting up of equation [1] Correct manipulation into quadratic form [1] Factorising [1] Correct answer

