1(a)	Parallel lines have the same gradient (<i>m</i> value in $y = mx + c$)	[1]
1(b)	Perpendicular lines meet at 90° (their gradients multiply to give -1)	[1]
2(a)	y - 5x = 2	[1]
2(b)	2y = 6x + 10	[1]
3(a)	y = -3x + 2	[1]
3(b)	y = 4x - 3	[1]
3(c)	y = 2x - 7	[1]
4(a)	No	[1]
4(b)	No	[1]
4(c)	Yes	[1]
4(d)	Yes	[1]
4(e)	No	[1]
5(a)	$m = \frac{\text{change in } y}{\text{change in } x} = \frac{7 - 1}{102} = \frac{6}{12} = \frac{1}{2}$	[1] Calculating gradient
	$7 = \frac{1}{2} \times 10 + c$; $7 = 5 + c$; $c = 2$	[4] Out of the first success for a study to first
	$1 = \frac{1}{2} \times (-2) + c.; 1 = -1 + c; c = 2$	[1] Substituting values for <i>x</i> and <i>y</i> to find the equation
	$y = \frac{1}{2}x + 2$	
5(b)	Perpendicular	[1]
5(c)	Parallel	[1]
5(d)	Parallel	[1]
5(e)	Neither	[1]
5(f)	Neither	[1]
5(g)	Perpendicular	[1]

6	Parallel lines have the same gradient, so Gradient of D = Gradient of C	[1] Parallel lines define by equal gradient
	Gradient of $C = \frac{\text{change in } y}{\text{change in } x} = \frac{42}{11 - 2} = \frac{6}{9} = \frac{2}{3}$	[1] Calculation
	Gradient of $D = \frac{2}{3}$	[1] Correct gradient
	Points on $D = (3 + n), 2 + \frac{2}{3}n)$ e.g. Point on D (6,4)	[1] accept any correct point on D
7(a)	Gradient = $\frac{3}{2}$	[1] Correct gradient
	e.g. $y = \frac{3}{2}x - 1$	[1] Correct equation of the line
7(b)	Gradient = $-\frac{2}{3}$	[1] Correct gradient
	e.g. $y = -\frac{2}{3}x + 1$	[1] Correct equation of the line
8(a)	Gradient of $A = \frac{\text{change in } y}{\text{change in } x} = \frac{1}{2}$	[1] Correct gradient
	$y = \frac{1}{2}x$	[1] Correct equation of the line
8(b)	Gradient of $B = \frac{\text{change in } y}{\text{change in } x} = -2$	[1] Correct gradient
	y = -2x + 5	[1] Correct equation of the line
9(a)	Parallel so $m = 1/3$	[1] for correctly determining the gradient
	Substituting vales for x and y $14 = \frac{1}{3} \times 9 + c$; $c = 11$.; $y = \frac{1}{3}x + 11$	[1] for calculating c
9(b)	Perpendicular so $m \times -3 = -1$; $m = \frac{-1}{-3}$; $m = \frac{1}{3}$	[1] for correctly determining the gradient
	Substituting values for x and y $4 = \frac{1}{3} \times 5 + c.; c = \frac{7}{3}.; y = \frac{1}{3}x + \frac{7}{3}$	[1] for calculating c
9(c)	Perpendicular so $m \times \frac{1}{3} = -1$. ; $m = -1 \times 3$ m = -3	[1] for correctly determining the gradient
	Substituting vales for x and y $-5 = -3 \times -1 + c$; $c = -8$; $y = -3x - 8$	[1] for calculating c

Turn over ►

9(d)	$2y = 3(2 - 3x)$; $2y = 6 - 9x$; $y = -\frac{9}{2}x + \frac{6}{2}$ Line is parallel, so $m = -\frac{9}{2}$	[1] for correctly determining the gradient
	y = x + 8 and $y = -3x + 4x + 8 = -3x + 4$; $4x + 8 = 4$; $4x = -4$; $x = -1y = -1 + 8$; $y = 7Passes through the point (-1,7)$	[1] for finding the intersection point
	$y = -\frac{9}{2}x + c ; 7 = -\frac{9}{2} \times -1 = c ; c = \frac{5}{2}$ $y = -\frac{9}{2}x + \frac{5}{2}$	[1] for calculating <i>c</i>
10	Opposite side of rectangle has the same gradient $y = \frac{2}{3}x + c$	[1] Value of <i>c</i> could be anything except 3
	Other sides of rectangle must meet these two sides at 90°, so are perpendicular and have gradients such that they multiply with the original sides to make -1 . $\frac{2}{3} \times -\frac{3}{2} = -1$; $m = -\frac{3}{2}$	[1] Gradient of other two sides
	Equation of lines must be: $y = -\frac{3}{2}x + c$	[1] Where the two intercepts aren't equal.
11(a)	Line A: $5y - 2x - 2 = 0$; $5y = 2x + 2$; $y = \frac{2}{5}x + \frac{2}{5}$ Line B is perpendicular, so the gradient is: $m \times \frac{2}{5} = -1$; $m = -\frac{5}{2}$ Equation of Line B: $y = -\frac{5}{2}x + c$; $-1 = -\frac{5}{2} \times 1 + c$; $c = \frac{3}{2}$; $y = -\frac{5}{2}x + \frac{3}{2}$	[1] Find line <i>B</i>
	$y = \frac{2}{5}x + \frac{2}{5}, \qquad y = -\frac{5}{2}x + \frac{3}{2};$ $\frac{29}{10}x = \frac{11}{10}; \qquad 29x = 11, \qquad x = \frac{11}{29}$ Substituting this value back in to find y: $y = -\frac{5}{2}x + \frac{3}{2}; \qquad y = -\frac{5}{2} \times \frac{11}{29} + \frac{3}{2}; \qquad y = -\frac{55}{58} + \frac{3}{2}$ $y = \frac{16}{29} \text{ Point of intersection is } \left(\frac{11}{29}, \frac{16}{29}\right)$	[1] Find the point of intersection by solving as simultaneous equations
11(b)	A third line, <i>C</i> , is perpendicular to <i>B</i> and has <i>y</i> - intercept of -3 . Write down the equation of <i>C</i> . Has the same gradient as A, $m = \frac{2}{5}$ Has a y-intercept of -3., $c = -3$ $y = \frac{2}{5}x - 3$	[1] Equation of line <i>C</i>