Parallel and Perpendicular Lines Mark Scheme		
1(a)	Parallel lines have the same gradient (m value in $y=m x+c$)	[1]
1(b)	Perpendicular lines meet at 90° (their gradients multiply to give -1)	[1]
2(a)	$y-5 x=2$	[1]
2(b)	$2 y=6 x+10$	[1]
3(a)	$y=-3 x+2$	[1]
3(b)	$y=4 x-3$	[1]
3(c)	$y=2 x-7$	[1]
4(a)	No	[1]
4(b)	No	[1]
4(c)	Yes	[1]
4(d)	Yes	[1]
4(e)	No	[1]
5(a)	$m=\frac{\text { change in } y}{\text { change in } x}=\frac{7-1}{10--2}=\frac{6}{12}=\frac{1}{2}$	[1] Calculating gradient
	$\begin{aligned} & 7=\frac{1}{2} \times 10+c ; 7=5+c ; c=2 \\ & 1=\frac{1}{2} \times(-2)+c . ; 1=-1+c ; c=2 \\ & y=\frac{1}{2} x+2 \end{aligned}$	[1] Substituting values for x and y to find the equation
5(b)	Perpendicular	[1]
5(c)	Parallel	[1]
5(d)	Parallel	[1]
5(e)	Neither	[1]
5(f)	Neither	[1]
5(g)	Perpendicular	[1]

9(d)	$2 y=3(2-3 x) ; 2 y=6-9 x ; y=-\frac{9}{2} x+\frac{6}{2}$ Line is parallel, so $m=-\frac{9}{2}$	[1] for correctly determining the gradient
	$\begin{aligned} & y=x+8 \text { and } y=-3 x+4 \\ & x+8=-3 x+4 ; 4 x+8=4 ; 4 x=-4 ; x=-1 \\ & y=-1+8 ; y=7 \end{aligned}$ Passes through the point ($-1,7$)	[1] for finding the intersection point
	$\begin{aligned} & y=-\frac{9}{2} x+c ; 7=-\frac{9}{2} x-1=c ; c=\frac{5}{2} \\ & y=-\frac{9}{2} x+\frac{5}{2} \end{aligned}$	[1] for calculating c
10	Opposite side of rectangle has the same gradient $y=\frac{2}{3} x+c$	[1] Value of c could be anything except 3
	Other sides of rectangle must meet these two sides at 90°, so are perpendicular and have gradients such that they multiply with the original sides to make -1 . $\frac{2}{3} \times-\frac{3}{2}=-1 \quad ; m=-\frac{3}{2}$	[1] Gradient of other two sides
	Equation of lines must be: $y=-\frac{3}{2} x+c$	[1] Where the two intercepts aren't equal.
11(a)	Line A : $5 y-2 x-2=0 ; 5 y=2 x+2 ; y=\frac{2}{5} x+\frac{2}{5}$ Line B is perpendicular, so the gradient is: $m \times \frac{2}{5}=-1 ; m=-\frac{5}{2}$ Equation of Line B : $y=-\frac{5}{2} x+c ;-1=-\frac{5}{2} \times 1+c ; c=\frac{3}{2} ; y=-\frac{5}{2} x+\frac{3}{2}$	[1] Find line B
	$\begin{aligned} & y=\frac{2}{5} x+\frac{2}{5}, \quad y=-\frac{5}{2} x+\frac{3}{2} ; \\ & \frac{29}{10} x=\frac{11}{10} . ; \quad 29 x=11, \quad x=\frac{11}{29} \end{aligned}$ Substituting this value back in to find y : $y=-\frac{5}{2} x+\frac{3}{2} ; y=-\frac{5}{2} \times \frac{11}{29}+\frac{3}{2} ; y=-\frac{55}{58}+\frac{3}{2}$ $y=\frac{16}{29}$ Point of intersection is $\left(\frac{11}{29}, \frac{16}{29}\right)$	[1] Find the point of intersection by solving as simultaneous equations
11(b)	A third line, C, is perpendicular to B and has y intercept of -3 . Write down the equation of C. Has the same gradient as A, $m=\frac{2}{5}$ Has a y-intercept of $-3 ., c=-3$ $y=\frac{2}{5} x-3$	[1] Equation of line C

