Linear Sequences Mark Scheme		
1(a)	27	[1]
	31	[1]
1(b)	Difference between terms is 4 . $\text { OR; } n^{\text {th }} \text { term }=4 n+1$ OR you add 4 to get to the next term	[1] - accept any mathematically correct answer
2(a)	4	[1] - for correct first term
	4, 6, 8, 10, 12	[1] - for sequence increasing by 2
2(b)	202	[1]
2(c)	The numbers in the sequence are all even.	[1]
3(a)	25	[1]
3(b)	$4 n$	[1] - for correct multiplier
	$n^{\text {th }}$ term $=4 n+1$	[1] - for correct linear increment
3(c)	$4(47)+1=189$	[1]
4(a)	33	[1]
4(b)	$6 n$	[1] - for correct multiplier
	$n^{\text {th }}$ term $=6 n-3$	[1] for correct linear increment
4(c)	$6(9)-3=51$	[1]
5(a)	2	[1] - for correct first term
	6,10,14,18	[1] - for sequence increasing by 4
5(b)	$4 n-2=82$	[1] - for method
	$4 n=84 \therefore n=21$	[1] - correct answer
5(c)	The sequence increment is 4,78 and 82 are in sequence, 80 cannot be.	[1] - accept any mathematically correct answer
6(a)	8	[1]
	10	[1] - implies understanding of sequence
6(b)	$n^{\text {th }}$ term $=2 t+2$	[1] - for finding the $n^{\text {th }}$ term
	$2 t+2=115$	[1] - for method
	$2 t=113 \therefore t=56.5 \therefore 57$ tables	[1] - correct number of tables and chairs
	Cost $=(57 \times 10)+(115 * 2)=570+230=£ 800.00$	[1] - correct answer

