Iterative Methods Mark Scheme				
1(a)	2.6	[1]		
1(b)	x_5 second decimal place is above 5 so the answer is rounded up to 2.6. The solutions are approaching 2.6 with the increases getting smaller.	[1]		
2	$x_0 = 0.5$ $x_1 = 1.587$	[1] Correct to 3.dp		
	$x_2 = -0.704$	[1] Correct to 3.dp		
	$x_3 = 2.066$	[1] Correct to 3.dp		
3(a)	$x_0 = -3$ $x_1 = -3 - \frac{2}{-3^2} = -3.22$	[1] mark for substitution of -3 into the equation (to get $x_1 = -3.22$)		
	$x_2 = -3 - \frac{2}{-3.22^2} = -3.19$	[1] mark for substitution of -3.22 into the equation (to get $x_2=-3.19$) and -3.19 into the equation (to get $x_3=-3.20$)		
	$x_3 = -3 - \frac{2}{-3.19^2} = -3.20$	[1] mark for -3.22 AND -3.19 AND -3.20		
3(b)	$x_{n+1} = -3 - \frac{2}{x_n^2}$ is the iterative form of $x^3 + 3x^2 + 2 = 0$	[1] mark for the connection between the iterative form and the equation		
	So x_1 , x_2 and x_3 are estimations of the solution $x^3 + 3x^2 + 2 = 0$	[1] mark for statement about the link. Key word is estimation/estimate .		
4(a)	$x_{n+1} = \sqrt{10 - x_n}$	[1]		
4(b)	$x_{n+1} = \sqrt[3]{5x_n - 1}$	[1]		
4(c)	$x_{n+1} = \sqrt[3]{10x_n^2 + 30}$	[1]		

5(a)	$x_{n+1} = \sqrt[3]{\frac{4-6x_n}{3}}$	[1] Attempt of formula with correct notation [1] Correct answer	
	$x_{n+1} = \sqrt[3]{\frac{4-6x_n}{3}}$		
5(b)	$x_{n+1} = \sqrt[3]{\frac{4 - 6x_n}{3}}$ $x_1 \qquad 1.101$ $x_2 \qquad -0.953$ $x_3 \qquad 1.480$	[1] x_1 [1] x_2 [1] x_3	
6	$Monday = 50$ $Tuesday = 50 \times 0.98 = 49$	[1] mark for a correct method to find the volume on Tuesday. e.g. 50×0.98	
	Monday = 50 Tuesday = $50 \times 0.98 = 49$ Wednesday = $49 \times 0.98 = 48.02$ Thursday= $48.02 \times 0.98 = 47.0596$ Friday = $47.0596 \times 0.98 = 46.118408$	[1] mark for a complete iterative process	
	Friday = 46 litres	[1] mark for answer of 46	
7(a)	Volume of the cube = x^3 Volume of the cuboid =1 $(x)(x + 10) = x^2 + 10x$ Equating the volumes $\rightarrow (x^3) = (x^2 + 10x) + 20$	[1] mark for either x^3 OR $1(x)(x + 10)$ OR $x^2 + 10x$	
	Rearranging the formula $\Rightarrow x^3 - x^2 - 10x = 20$	[1] mark for correct working leading to $x^3 - x^2 - 10x = 20$	

	x	x^3-x^2-10x	Comment		
	4	8	Too small		
	5	50	Too large		
7(b)	4.5	25.875	Too large		
	4.4	21.824	Too large		
	4.3	18.017	Too small		
	4.35	19.890	Too small		

- [1] mark for a trial of either 4 or 5
- [1] mark for a trial between $4 \le x \le 5$
- [1] mark for a trial between $4.3 \le x \le 4.3$
- [1] mark for x = 4.4

Note: No working scores no marks even if the answer is correct.