Gradients of Straight Lines Mark Scheme		
1(a)	$\frac{\text { Change in } y}{\text { Change in } x}=\frac{3}{2}$	[1]
1(b)	$\frac{\text { Change in } y}{\text { Change in } x}=-\frac{2}{3}$	[1]
1(c)	$\frac{\text { Change in } y}{\text { Change in } x}=1$	[1]
1(d)	$\frac{\text { Change in } y}{\text { Change in } x}=-4$	[1]
2(a)	E	[1] Greatest positive gradient
2(b)	G	[1] Smallest positive gradient
2(c)	H	[1] Greatest negative gradient
2(d)	F	[1] Smallest negative gradient
3(a)	$\frac{\text { Change in } y}{\text { Change in } x}=\frac{4}{3}$	[1] Gradient of A
3(b)	$\frac{\text { Change in } y}{\text { Change in } x}=0$	[1] Gradient of B (no change in y with regards to x so the gradient is zero)
4(a)	$\frac{\text { Change in } y}{\text { Change in } x}=\frac{4}{3}$	[1] Gradient of X
	$\frac{\text { Change in } y}{\text { Change in } x}=\frac{7}{2}$	[1] Gradient of Y
5(a)	$\frac{\text { change in } y}{\text { change in } x}=\frac{7-5}{8-1}$	[1] Gradient between two points
	$=\frac{2}{7}$	[1] Answer
5(b)	$\frac{\text { change in } y}{\text { change in } x}=\frac{-2-6}{7-3}=\frac{-8}{4}$	[1] Gradient between two points
	$=-2$	[1] Answer
6	$A(x, y) \rightarrow B(3 x, 4 y)$	[1] Relation between two points
	$\text { gradient }=\frac{\text { change in } y}{\text { change in } x}=\frac{4 y-y}{3 x-x}=\frac{3 y}{2 x}$	[1] Answer

