			Direct and	d Inverse P	roportion	Mark Scheme
1(a)			y = kx		[1] Correct proportionality equation	
	$36 = 4k \operatorname{so} k = 9$					[1] Value of k
	y = 9x					[1] Correct final equation
1(b)	$y = 9 \times 3 = 27$					[1] Substitute $x = 3$ into the eq. from (a)
2(a)	$y = kx^2$					[1] Correct proportionality equation
		36	5 = 4k, k =	9	[1] Value of k	
	$y = 9x^2$					[1] Correct final equation
2(b)			$x = \frac{7}{3}$		[1] Substitute $y = 49$ into the eq. from (a)	
3(a)	d = kc 12 = 3c so k = 4					[1] Correct proportionality equation
						[1] Value of k
		d = 4c				[1] Correct final equation
3(b)	c d	3 12	5 20	7 28	12 48	$\begin{bmatrix} 1 \\ c = 7 \\ [1] \\ d = 20 \\ [1] \\ d = 48 \end{bmatrix}$
4(a)		<i>y</i> =	$\frac{k}{x}$, 4 =	$=\frac{k}{7}$	[1] Correct proportionality equation	
			<i>k</i> = 28		[1] Value of k	
	So $y = \frac{28}{x}$					[1] Correct final equation
4(b)		2 =	$\frac{28}{x}$, $x =$	= 14	[1] Substitute $y = 2$ into the eq. from (a)	
5(a)	$y = \frac{k}{x^2}$					[1] Correct proportionality equation
		3	$=\frac{k}{4^2}, k=4$	8	[1] Value of k	
	$y = \frac{48}{x^2}$					[1] Correct final equation
5(b)	$y = \frac{48}{25}$					[1] Substitute $x = 5$ into the eq. from (a)
6(a)		$r \propto \frac{1}{x^2}$, $r = \frac{k}{x^2}$				[1] Correct proportionality equation
		(4) =	$= \frac{k}{(4)^2}$, $k =$	= 64	[1] Value of k	
	$r = \frac{64}{x^2}$					[1] Correct final equation

Turn over ►

6(b)	$r = \frac{64}{(2)^2} = 16$	[1] Substitute $x = 2$ into the eq. from (a)
6(c)	$x^2 = \frac{64}{r} = \frac{64}{2}$	[1] Substitute $x = 2$ into the eq. from (a)
	$x = \sqrt{32} = 4\sqrt{2}$	[1] Correct value of x
7	$a = kb^2$ and $a = m\sqrt{c}$	[1] Correct proportionality equations using any letters for k and m .
	So $kb^2 = m\sqrt{c}$	[1] Equating the two equations
	So $b^2 = \frac{m}{k} \sqrt{c}$	[1] Rearranging
	So $b^2 \propto \sqrt{c}$, so $b^2 = g\sqrt{c}$	[1] Introducing new proportionality constant
	$g = \frac{b^2}{\sqrt{c}} = \frac{4.5^2}{\sqrt{2.25}} = 13.5$	[1] Finding (g)
	$b^2 = 13.5 \sqrt{8}$; $b = 6.18$	[1] Correct value of b to 3 s.f.