Best Buy Mark Scheme		
1	$\begin{gathered} \text { Single }=1500 \mathrm{ml} \\ 1 \mathrm{ml}=0.1 \mathrm{p} \end{gathered}$	[1] Find base unit cost
	$\begin{gathered} \text { Multipack }=6 \times 330=1980 \mathrm{ml} \\ 1 \mathrm{ml}=0.0 \dot{8} \dot{5} \mathrm{p} \end{gathered}$	[1] Find base unit cost
	Multi pack is cheaper	[1] Correct comparison of value
2	Desk $=\frac{250}{4}=62.5$ packs Delaware $=\frac{250}{2}=125$ packs	[1] Calculation of number of packs
	$\begin{gathered} \text { Desk }=63 \text { packs }=63 \times £ 9.95=£ 626.85+£ 4.95= \\ \text { £631.80 } \\ \text { Delware }=125 \times £ 4.99=£ 623.75+£ 299=£ 626.74 \end{gathered}$	[1] Calculation of cost
	Delware Resources is the best buy	[1] Correct answer with workings
3	$\begin{aligned} & \text { Shop } A=0.158 \mathrm{p} \\ & \text { Shop } B=0.158 \mathrm{p} \end{aligned}$	[1] Calculation of both A and B
	Shop C $=0.099 \mathrm{p}$ per gram	[1] Calculation of shop C
	Shop D $=0.1032 \mathrm{p}$	[1] Calculation of shop D
	Shop C is the cheapest	[1] Correct answer with workings
4	Small area $=16 \pi$ Inches 2 Medium area $=25 \pi$ Inches 2 Large area $=36 \pi$ Inches 2	[1] Correct areas
	Cost per square inch We can cancel out the π and just divide by 16,25 and 36 . $\begin{gathered} \text { Small }=\frac{799 p}{16}=49.94 \mathrm{p} \\ \text { Medium }=\frac{999 p}{25}=39.96 \mathrm{p} \\ \text { Large }=\frac{1299 p}{36}=36.08 \mathrm{p} \end{gathered}$	[1] Calculation of cost per unit or amount per $£ 1$ is acceptable [1] All 3 calculations correct
	Large Pizza is the best value	[1] Correct answer with workings

5(a)	Area of single $=200 \mathrm{~cm}^{3}$ Area of box $=3200 \mathrm{~cm}^{3}$	[1] Calculation of area
	Area of wall $=40000 \mathrm{~cm}^{3}$	[1] Calculation of area
	$\begin{gathered} \frac{40000}{200}=200 \text { tiles } \\ \frac{40000}{3200}=12.5 \text { boxes }=13 \text { full boxes } \end{gathered}$	[1] Correct number of tiles required
	Single tile cost $200 \times £ 0.49=£ 98$ Cost of the box of tiles $13 \times £ 7.99=£ 103.87$	[1] Finding the cost of 200 tiles vs 13 boxes of tiles
	Supplier A is better value	[1] Correct answer with workings
5(b)	$12.5 x £ 7.99=£ 99.87$ No, Supplier A is still better value	[1] Correct statement with workings
6	$\begin{gathered} \text { Jack } \\ 4 A+5 B+9 C=8.96 \\ (4 \times 1)+(5 \times 0.5)+(9 \times 0.750)=13.25 \text { litres } \end{gathered}$	[1] Forming equation
	$\frac{8.96}{13.25}=£ 0.676$ per litre	[1] Correct value per L or ml
	$\begin{gathered} \text { Sophie } \\ 8 A+10 B=8.92 \\ (8 \times 1)+(10 \times 0.5)=13 \text { litres } \end{gathered}$	[1] Forming equation
	$\frac{8.92}{13}=£ 0.686 \text { per litre }$	[1] Correct value per L or ml
	$\begin{gathered} \text { Kabiria } \\ 9 A+9 B+5 C=11.77 \\ (9 \times 1)+(9 \times 0.5)+(5 \times 0.750)=17.25 \text { litres } \\ \frac{11.77}{17.25}=£ 0.682 \text { per litre } \end{gathered}$	[1] Forming equation and correct value per L or ml. Only 1 mark due to repeat of same calculation methods.
	Jack bought the cheapest water per litre.	[1] Accept value per L or ml

