Circles - Area and Circumference Mark Scheme		
1		[5] Mark for each correctly matched term
2(a)	$2 \times 3.7=7.4 \mathrm{~m}$	[1] Diameter of the circle
2(b)	$C=\pi d$ or $7.4 \times \pi=23.2478$	[1] Correct circumference
	$C=23.25 \mathrm{~m}$	[1] Correct rounding required
3(a)	Diameter $=2 \times r=2 \times 3.6=7.2 \mathrm{~cm}$	[1] Multiplication of radius by 2
	Circumference $=\pi \times d=2 \times \pi \times r=7.2 \pi \mathrm{~cm}$	[1] Correct circumference in terms of π
3(b)	Area $=\pi \times r^{2}=\pi \times 3.6^{2}$	[1] Correct calculation
	$=12.96 \pi=40.7 \mathrm{~cm}^{2}$	[1] Correct area to 1 decimal place
4	Perimeter of semi-circle arc: $\frac{1}{2} \times \pi \times d=\frac{1}{2} \times \pi \times 16=8 \pi \mathrm{~cm}$	[1] Correct calculation
	Perimeter of diameter $=16 \mathrm{~cm}$	[1] Correct calculation
	Total Perimeter $=16+8 \pi=41.1 \mathrm{~cm}$	[1] Correct perimeter to 1 decimal place

5	Area $=\pi \times x^{2}=150 \mathrm{~cm}^{2}$	[1] Forming correct equation
	$x=\sqrt{\frac{150}{\pi}}$	[1] Rearranging to make x the subject
	$x=6.9 \mathrm{~cm}$	[1] Correct radius to 1 decimal place
6(a)	Area of $A=\pi \times 16^{2}=256 \pi \mathrm{~cm}^{2}$	[1] Correct area of circle A
6(b)	Area of $B=\pi \times 7^{2}=49 \pi \mathrm{~cm}^{2}$	[1] Correct area of circle B
	Shaded area $=256 \pi-49 \pi=207 \pi \mathrm{~cm}^{2}$	[1] Finding the difference of the two areas
	$=650.3 \mathrm{~cm}^{2}$	[1] Correct shaded area to 1 decimal place
7	Shaded outer area $=100 \pi-49 \pi=51 \pi \mathrm{~m}^{2}$	[1] Calculation of the area of the outer ring
	Area of interior circles $=5 \times\left(\pi \times 1^{2}\right)=5 \pi \mathrm{~m}^{2}$	[1] Calculation of the interior circles area
	Total shaded area $=(51 \pi+5 \pi)=56 \pi \mathrm{~m}^{2}$	[1] Summing all shaded areas
	$=\frac{56 \pi}{100 \pi}=56 \%$	[1] Correct shaded area as a percentage to the total area of the large circle
8	Ratio of areas is $1^{2}: 2^{2}: 3^{2}: 5^{2}$	[1] Correct calculation
	1: 4: 9: 25	[1] Correct answer in its simplest form
9(a)	Diagonal $A C=12 \mathrm{~cm}$	[1] Identify length of diagonal AC or BD
	$\begin{gathered} x^{2}+x^{2}=12^{2} \\ 2 x^{2}=144 \\ x=\sqrt{72}=6 \sqrt{2} \end{gathered}$	[1] By use of Pythagoras or otherwise, find the lengths, x, of each side of the square
	Area $=6 \sqrt{2} \times 6 \sqrt{2}=72 \mathrm{~cm}^{2}$	[1] Correct area of square $A B C D$
9(b)	Area of circle $=\pi \times 6^{2}=36 \pi$	[1] Correct calculation
	Shaded area $=36 \pi-72=41.1 \mathrm{~cm}^{2}$	[1] Correct shaded area to 1 decimal place

