A-level Mathematics
MPC4-Pure Core 4
Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q1 \& Solution \& Mark \& Total \& Comment \\
\hline (a)
(b) \& \[
\left.\begin{array}{c}
10+24 x-12 x^{2} \\
=A(3-x)(1+4 x)+B(1+4 x)+C(3-x) \\
A=3 \\
B=-2 \\
C=1
\end{array}\right] \begin{array}{r}
\int 3-\frac{2}{3-x}+\frac{1}{1+4 x} d x=3 x \\
+r \ln (3-x)+s \ln (1+4 x) \\
+2 \ln (3-x)+\frac{1}{4} \ln (1+4 x) \\
\int_{0}^{2} \mathrm{f}(\mathrm{x}) d x=\left(3 \times 2+2 \ln 1+\frac{1}{4} \ln 9\right) \\
\\
=6-\left(3 \times 0+2 \ln 3+\frac{1}{4} \ln 1\right)
\end{array}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
A1 \\
A1 \\
B1ft \\
M1 \\
A1ft \\
M1 \\
A1
\end{tabular} \& 4

5 \& | PI by B or C being correct. |
| :--- |
| Could be spotted |
| ft on their value of A. |
| ft on their values of B and C. |
| Correct use of $F(2)-F(0)$ for their $A x+r \ln (3-x)+s \ln (1+4 x)$ form but 0 and $\ln 1=0$ can be $\mathbf{P I}$ |

\hline \& \& \& 9 \&

\hline | (a) |
| :--- |
| (a) | \& \multicolumn{4}{|l|}{| If $A=3$ clearly comes FIW then $\mathbf{B O}$. |
| :--- |
| PI by B or C being correct covers case(s) such as the denominator(s) still included at the initial line but not then used when finding B or C. |}

\hline (a) \& | By long division $\begin{gathered} -4 x^{2}+11 x+3 \begin{array}{l} \frac{-12 x^{2}+24 x+10}{} \\ \frac{-12 x^{2}+33 x+9}{-9 x+1} \\ \frac{-9 x+1}{(3-x)(1+4 x)}=\frac{B}{3-x}+\frac{C}{1+4 x} \\ -9 x+1=B(1+4 x)+C(3-x) \\ B=-2 \\ C=1 \\ A=3 \end{array} \\ \hline \end{gathered}$ |
| :--- |
| NMS or cover up rule scores $A=3$ $B=-2 \text { or } C=1$ |
| Both B and C correct | \& | (M1) |
| :--- |
| (A1) |
| (A1) |
| (B1) |
| (B1) |
| (B2) |
| (+B1) | \& | (4) |
| :--- |
| (4) | \& | PI by B or C correct |
| :--- |
| Either correct |

\hline (b) \& \multicolumn{4}{|l|}{| Condone missing brackets with $\ln (3-x)$ and $\ln (1+4 x)$ provided recovered when using limits. |
| :--- |
| Beware candidate who changes $-\frac{2}{3-x}$ to $\frac{2}{x-3}$ and gets $2 \ln (x-3)$ which isn't valid - only award the first M1 if they clearly use $2 \ln \|x-3\|$ in this case. |}

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline (a)

(b) \& | $\begin{gathered} \tan \alpha=\frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2} \\ \tan \beta=(\pm) \frac{1}{\sqrt{8}} \\ \tan \beta=-\frac{1}{\sqrt{8}} \end{gathered}$ $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$ $=\frac{\sqrt{2}-\left(-\frac{1}{\sqrt{8}}\right)}{1+\sqrt{2}\left(-\frac{1}{\sqrt{8}}\right)}$ $=\frac{5}{2} \sqrt{2}$ |
| :--- |
| or Pythagoras |
| AG - must see $\sqrt{ } 6$ in this approach |
| Either $\frac{1}{\sqrt{8}}$ or $-\frac{1}{\sqrt{8}}$ |
| ACF: e.g. $-\frac{1}{2 \sqrt{2}}$ or $-\frac{\sqrt{2}}{4}$ etc. |
| Correct identity with $\tan \alpha=\sqrt{2}$ and their $\tan \beta$ value correctly substituted. |
| 2 |
| OE - accept if written as $\frac{5 \sqrt{2}}{2}$ etc. NMS scores 0/2. |

\hline \& 5

\hline \& Candidates who find α and/or β as 54.7° and 160.5° and use these to find $\tan \alpha$ and $\tan \beta$ score 0 marks in part (a) but can score in part (b) provided exact values for $\tan \alpha$ and $\tan \beta$ are used - PI by a correct final answer of $\frac{5}{2} \sqrt{2}$.

\hline (a)

(b) \& | If $\cos \alpha=\frac{\sqrt{3}}{3}$ is replaced by $\cos \alpha=\frac{1}{\sqrt{3}}$ the right-angled triangle will have sides $1, \sqrt{2}$ and $\sqrt{3}$. |
| :--- |
| As an alternative to the right angled triangle they might use appropriate identities e.g. $\sin ^{2} \alpha+\cos ^{2} \alpha=1 \rightarrow \sin ^{2} \alpha=\frac{6}{9} \rightarrow \sin \alpha=\sqrt{\frac{6}{9}} \rightarrow \tan \alpha=\sqrt{\frac{6}{9}} / \frac{\sqrt{3}}{3}$ OE $\rightarrow \tan \alpha=\sqrt{2} \quad$ B1 |
| or $1+\tan ^{2} \alpha=\sec ^{2} \alpha \rightarrow 1+\tan ^{2} \alpha=\frac{9}{3} \rightarrow \tan ^{2} \alpha=2 \rightarrow \tan \alpha=\sqrt{2} \quad$ B1 |
| or $1+\cot ^{2} \beta=\operatorname{cosec}^{2} \beta=\frac{1}{\sin ^{2} \beta} \rightarrow \cot ^{2} \beta=8 \rightarrow \tan \beta=(\pm) \frac{1}{\sqrt{8}} \quad \mathbf{M} \mathbf{1} \rightarrow \tan \beta=-\frac{1}{\sqrt{8}} \quad$ OE A1 Candidates who just state such as $\tan \beta=\tan \left(\sin ^{-1}\left(\frac{1}{3}\right)\right)=-\frac{1}{\sqrt{8}} \quad$ score $0 / 2$ etc. |
| $\tan (\alpha-\beta)=\frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}=\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\cos \alpha \cos \beta+\sin \alpha \sin \beta}=\frac{\left(\frac{\sqrt{6}}{3}\right)\left(-\frac{\sqrt{8}}{3}\right)-\left(\frac{\sqrt{3}}{3}\right)\left(\frac{1}{3}\right)}{\left(\frac{\sqrt{3}}{3}\right)\left(-\frac{\sqrt{8}}{3}\right)+\left(\frac{\sqrt{6}}{3}\right)\left(\frac{1}{3}\right)} \quad$ M1 \quad Correct identity with correct substitution of $\cos \alpha=\frac{\sqrt{3}}{3}, \sin \beta=\frac{1}{3}$ and their values of $\sin \alpha$ and $\cos \beta \rightarrow \tan (\alpha-\beta)=\frac{5}{2} \sqrt{2} \quad \mathbf{A 1}$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline (a)
(b)(i)
(b)(ii) \& \begin{tabular}{l}
\[
\begin{gathered}
(1-9 x)^{\frac{2}{3}}=1+\frac{2}{3}(-9 x)+k x^{2} \\
=1-6 x-9 x^{2} \\
(64-9 x)^{\frac{2}{3}}=64^{\frac{2}{3}}\left(1-\frac{9}{64} x\right)^{\frac{2}{3}} \\
\left(1-\frac{9}{64} x\right)^{\frac{2}{3}}=1+\frac{2}{3} \times\left(-\frac{9}{64} x\right)+\frac{2}{3} \times \frac{-1}{3}\left(-\frac{9}{64} x\right)^{2} \times \frac{1}{2} \\
(64-9 x)^{\frac{2}{3}}=16-\frac{3}{2} x-\frac{9}{256} x^{2}
\end{gathered}
\] \\
Substituting \(x=-\frac{1}{3}\) (OE) into their (b)(i)
\[
\left(67^{\frac{2}{3}}\right)=16+\frac{127}{256}
\]
\end{tabular} \& M1
A1
B1
M1
M1
A1
M1
A1 \& 2

3

2 \& | or better with $k \neq 0$ |
| :--- |
| Coefficients must be simplified. $\text { ACF - e.g. } 16\left(1-\frac{9}{64} x\right)^{\frac{2}{3}}$ |
| OE - condone missing brackets. |
| Accept $16\left(1-\frac{3}{32} x-\frac{9}{4096} x^{2}\right)$ |
| $64-9 x=67 \Rightarrow x=-\frac{1}{3}$ or $-\frac{3}{9}$ |
| Must have correct expansion in (b)(i) and use $x=-\frac{1}{3}$. |
| OE for $\frac{127}{256}$ - e.g. $\frac{254}{512}$ etc. |
| NMS is $\mathbf{0 / 2}$ since 'Hence'... |

\hline \& \& \& 7 \&

\hline (b)(i) \& \multicolumn{4}{|l|}{Some candidates omit x in their expansion and just find the coefficients or make other slips. Allow recovery if the correct full expansion is seen later. As a guide, check the answer line first for B1 M1 A1.}

\hline (b)(i) \& \multicolumn{4}{|l|}{| Alt. 1 - using (a) |
| :--- |
| After $(64-9 x)^{\frac{2}{3}}=64^{\frac{2}{3}}\left(1-\frac{9}{64} x\right)^{\frac{2}{3}}$ |
| (B1) then using candidate's expansion for (a) with x replaced by $\frac{x}{64}$, $\left(1-\frac{9}{64} x\right)^{\frac{2}{3}}=1-6\left(\frac{x}{64}\right)-9\left(\frac{x}{64}\right)^{2}$ |
| (M1) |
| $(64-9 x)^{\frac{2}{3}}=16\left(1-\frac{3}{32} x-\frac{9}{4096} x^{2}\right)$ OE |
| Alt. 2 - using binomial formula $\begin{aligned} (64-9 x)^{\frac{2}{3}}=64^{\frac{2}{3}}+\frac{2}{3} & 64^{-\frac{1}{3}}(-9 x)+\frac{2}{3} \cdot\left(-\frac{1}{3}\right) \cdot \frac{1}{2} 64^{-\frac{4}{3}}(-9 x)^{2} \quad(\mathrm{M} 1) \text { condone missing brackets } \\ & =16-\frac{3}{2} x-\frac{9}{256} x^{2} \text { or } 16\left(1-\frac{3}{32} x-\frac{9}{4096} x^{2}\right) \text { OE (A2) } \end{aligned}$ |}

\hline (b)(ii) \& \multicolumn{4}{|l|}{Accept answer given as $16 \frac{127}{256}$ OE for final A1 mark.}

\hline
\end{tabular}

Q5	Solution	Mark	Total	Comment
(a)(i)	4500	B1	1	
(a)(ii)	1220	B1	1	
(a)(iii)	$4500 \mathrm{e}^{-\frac{1}{20} t}<1500$			
	$\frac{1}{20} t>\ln 3 \quad$ or $-\frac{1}{20} t<\ln \frac{1}{3} \quad$ or better	M1		Correctly converting from exponential to logarithmic form
	22	A1	2	Allow 21.97... NMS scores B2 for 22 or 21.97...
(b)	$(Q=4 P \Rightarrow) \quad 3000 \mathrm{e}^{-\frac{1}{40} t}=4(4500) \mathrm{e}^{-\frac{1}{20} t} \quad \mathrm{OE}$	M1		Setting up a correct equation but M0 if logs not used later.
	$\frac{t}{40}=\ln 6 \quad$ or $\quad-\frac{t}{40}=\ln \frac{1}{6} \quad \mathrm{OE}$	A1		e.g. $\ln 3000-\frac{t}{40}=\ln 18000-\frac{t}{20}$
	72	A1	3	CAO
(c)(i)	$3000 e^{-\frac{1}{40} T}-4500 e^{-\frac{1}{20} T}=300$	M1		Setting up a correct equation - could include both x and T (or t).
	$\begin{gathered} \left(x=e^{-\frac{1}{40} T}\right) \Rightarrow 3000 x-4500 x^{2}=300 \\ 15 x^{2}-10 x+1=0 \end{gathered}$	A1	2	Correct quadratic in x (ACF) - apply ISW for wrong cancelling or rearranging.
(c)(ii)	$(x) \quad=\frac{10 \pm \sqrt{40}}{30} \quad(0.12 \ldots$ or $0.54 \ldots)$	dM1		
	$T=24.3(41 \ldots)$	A1		Allow 24
	$=170$ (days)	A1	3	Accept October $18{ }^{\text {th }}$ if 170 not seen.
			12	
(a)(iii)	Condone use of = instead of < or poor/incorrect use of inequality signs for M1 but for $\mathbf{A 1}$ we must see 22 (or 21.97...). M1 mark is PI by such as $\frac{1}{20} t=1.09 \ldots$ OE.			
(b)	Misinterpretation of $P=4 Q$ scores $0 / 3$ as it should lead to a negative value for t .			
	A1 mark is PI by such as $\frac{t}{40}=1.79 \ldots \mathrm{OE}$			
(c)(i)	The M1 awarded for setting up an equation in T (or t) is automatically earned if they miss this line out and immediately write down the correct quadratic in x .			
	Allow = replaced by an inequality for the M1 mark but the expression in x must be an equation for $\mathbf{A 1}$.			
(c)(ii)	For dM1 mark ft on any wrong quadratic - check method used or answers given.			

\begin{tabular}{|c|c|c|c|c|}
\hline Q6 \& Solution \& Mark \& Total \& Comment

\hline (a)
(b)

(c) \& $$
\begin{gathered}
(k=) \pi \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\cos 3 y)=-3 \sin 3 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(y \sin ^{2} 3 x\right)=\frac{\mathrm{d} y}{\mathrm{~d} x} \sin ^{2} 3 x+k y \sin 3 x \cos 3 x \\
=\frac{\mathrm{d} y}{\mathrm{~d} x} \sin ^{2} 3 x+6 y \sin 3 x \cos 3 x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(x+k)=1 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}\left(-3 \sin 3 y+\sin ^{2} 3 x\right)=1-6 y \sin 3 x \cos 3 x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1-6 y \sin 3 x \cos 3 x}{-3 \sin 3 y+\sin ^{2} 3 x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1-6\left(\frac{3 \pi}{2}\right) \sin \left(\frac{3 \pi}{2}\right) \cos \left(\frac{3 \pi}{2}\right)}{-3 \sin \left(\frac{9 \pi}{2}\right)+\sin ^{2}\left(\frac{3 \pi}{2}\right)} \\
y=-\frac{1}{2} x+\frac{7 \pi}{4}
\end{gathered}
$$ \& B1

B1
M1
A1
B1
M1
A1
M1

A1 \& 1 \& | Second term could be kysin6x or $\frac{\mathrm{d} y}{\mathrm{~d} x} \sin ^{2} 3 x+3 y \sin 6 x$ OE |
| :--- |
| Factor out correctly $\frac{d y}{d x}$ from their two terms. |
| OE |
| Using $x=\frac{\pi}{2}$ and $y=\frac{3 \pi}{2}$. PI by $m=-\frac{1}{2}$ from a correct derivative. |
| If $\frac{d y}{d x}$ is wrong we must see evidence of correct substitution. |
| OE: e.g. $y=\frac{7 \pi}{4}-0.5 x$ but must be $y=m x+c$ form with c exact. |
| Must be from correct derivative. |

\hline \& \& \& 9 \&

\hline (b)
(b)

(b) \& \multicolumn{4}{|l|}{| Condone a spurious $\frac{\mathrm{d} y}{\mathrm{~d} x}$ on LHS for the first 4 marks but penalise if included in finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$. |
| :--- |
| Alternative for product rule for an attempt to change $\sin ^{2} 3 x$ to $\frac{1}{2}(1-\cos 6 x)-$ must involve $\cos 6 x-$ $\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \cdot \frac{1}{2}(1-\cos 6 x)\right)=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \text { their } \frac{1}{2}(1-\cos 6 x)+k y \sin 6 x \quad \text { M1 }=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{1}{2}(1-\cos 6 x)+3 y \sin 6 x \quad \text { A1 }$ |
| They would then earn the second $\mathbf{M} \mathbf{1}$ for factoring out three terms involving $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (even if identity used is incorrect) then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-3 y \sin 6 x}{\frac{1}{2}(1-\cos 6 x)-3 \sin 3 y}$ OE A1 |
| If not scored in (b) the final M1 A1 marks can be earned if completed in part (c). |}

\hline
\end{tabular}

7	Solution	Mark	Total	Comment
(a)	$\begin{gathered} u=7+2 x^{2} \text { gives } \frac{\mathrm{du}}{\mathrm{dx}}=4 x \\ \int \frac{x}{\left(7+2 x^{2}\right)^{2}} \mathrm{~d} x=\int \frac{1}{4 u^{2}} \mathrm{~d} u=-\frac{1}{4 u} \\ =-\frac{1}{4\left(7+2 x^{2}\right)} \quad(+c) \end{gathered}$	M1 dM1 A1	3	$O E-$ e.g. $d u=4 x \mathrm{dx}$ etc. Integral all in u of the form $\int \frac{k}{u^{2}} \mathrm{~d} u$ leading to $\pm \frac{k}{u}$. OE - e.g. $-\frac{1}{4}\left(7+2 x^{2}\right)^{-1}$
(b)	$\begin{gathered} \int e^{-4 y} \mathrm{~d} y=\int \frac{3 x}{\left(7+2 x^{2}\right)^{2}} \mathrm{~d} x \\ \text { LHS }=-\frac{1}{4} e^{-4 y} \\ \text { RHS }=-\frac{3}{4\left(7+2 x^{2}\right)} \\ -\frac{1}{4} e^{-4 y}=-\frac{3}{4\left(7+2 x^{2}\right)}+C \\ x=2 \text { and } y=0 \text { to find } C \quad\left(=-\frac{1}{5}\right) \\ -\frac{1}{4} e^{-4 y}=-\frac{3}{4\left(7+2 x^{2}\right)}-\frac{1}{5} \quad \text { OE } \\ y=-\frac{1}{4} \ln \left(\frac{3}{7+2 x^{2}}+\frac{4}{5}\right) \end{gathered}$	B1 B1 B1ft M1 A1 A1	6	Correct separation seen and notation including integral signs and dy \& dx. ft on $3 \times(a)$ from a correct integrand Used correctly in an expression of the form $p e^{-4 y}=\frac{q}{7+2 x^{2}}+C$ ACF - e.g. $-\frac{1}{4} \ln \left(\frac{43+8 x^{2}}{5\left(7+2 x^{2}\right)}\right)$ or $\frac{1}{4} \ln \left(\frac{5\left(7+2 x^{2}\right)}{43+8 x^{2}}\right)$ etc.
			9	
(a)	Let $u=2 x^{2}, \frac{\mathrm{du}}{\mathrm{dx}}=4 x \quad$ OE \quad M1 $\int \frac{x}{\left(7+2 x^{2}\right)^{2}} \mathrm{~d} x=\int \frac{1}{4(7+u)^{2}} \mathrm{~d} u=-\frac{1}{4(7+u)} \mathrm{dM} \mathbf{1}=-\frac{1}{4\left(7+2 x^{2}\right)} \quad(+c)$ A1 By 'inspection' $\int \frac{x}{\left(7+2 x^{2}\right)^{2}} \mathrm{~d} x=\frac{k}{7+2 x^{2}} \quad \mathbf{M} \mathbf{1} \quad \mathbf{d M} \mathbf{1}=-\frac{1}{4\left(7+2 x^{2}\right)} \quad(+c) \quad \mathbf{A} \mathbf{1}$ If the 3 is taken to the LHS, marks are $\int \frac{1}{3} e^{-4 y} \mathrm{~d} y=\int \frac{x}{\left(7+2 x^{2}\right)^{2}} \mathrm{~d} x \quad$ B1 $\quad \rightarrow-\frac{1}{12} e^{-4 y} \quad \mathbf{B 1}=-\frac{1}{4\left(7+2 x^{2}\right)} \quad(+c) \quad$ B1 $\mathbf{f t}$ Using $x=2$ and $y=0$ to find C from and expression of the form $p e^{-4 y}=\frac{q}{7+2 x^{2}}+C \quad \mathbf{M} \mathbf{1} \quad\left(C=-\frac{1}{15}\right)$ $-\frac{1}{12} e^{-4 y}=-\frac{1}{4\left(7+2 x^{2}\right)}-\frac{1}{15} \mathbf{A 1} \rightarrow y=-\frac{1}{4} \ln \left(\frac{3}{7+2 x^{2}}+\frac{4}{5}\right) \quad \mathbf{A 1} \mathrm{OE}$ If any correct solution in the form $y=f(x)$ is seen then award the final A mark and apply ISW. Be very generous with placement of $d y$ and $d x$ provided they aren't placed in front of any function. SC If the candidate finds a correct value for c from a correct simplified exponential form but then makes a slip when writing out their solution award the first A1 at the correct value of c stage.			
(a)				
(b)				
(b)				
(b) (b)				

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& Solution \& Mark \& Total \& Comment

\hline (a)(i)
(a)(ii)

(b) \& \begin{tabular}{l}
B is $(1,5,10)$
$$
\begin{gathered}
{\left[\begin{array}{c}
1 \\
6 \\
12
\end{array}\right]} \\
{\left[\begin{array}{c}
-2 \\
6 \\
8
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
6 \\
12
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
6 \\
8
\end{array}\right]=(1)(-2)+(6)(6)+(12)(8)} \\
\sqrt{1^{2}+6^{2}+12^{2}} \sqrt{(-2)^{2}+6^{2}+8^{2}} \cos \theta= \pm 130
\end{gathered}
$$

or
$$
(\cos A B C)=\frac{ \pm 130}{\sqrt{1^{2}+6^{2}+12^{2}} \sqrt{(-2)^{2}+6^{2}+8^{2}}}
$$

(acute angle ABC) $=18.6^{\circ}$

Line through A and C has equation
$$
\begin{gathered}
(\boldsymbol{r})=\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]+\mu\left[\begin{array}{c}
-3 \\
0 \\
-4
\end{array}\right] \\
\overrightarrow{\boldsymbol{B D}}=\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]+\mu\left[\begin{array}{c}
-3 \\
0 \\
-4
\end{array}\right]-\left[\begin{array}{c}
1 \\
5 \\
10
\end{array}\right] \quad\left(=\left[\begin{array}{c}
2-3 \mu \\
-6 \\
-8-4 \mu
\end{array}\right]\right) \\
\overrightarrow{\boldsymbol{B} \boldsymbol{D}} \cdot \overrightarrow{\boldsymbol{A B}}=0 \\
(2-3 \mu)(-2)+(-6)(6)+(-8-4 \mu)(8)=0 \\
(\mu=-4) \\
D \text { is }(15,-1,18)
\end{gathered}
$$

Finding E by any appropriate method - symmetry, mid-point of $A D$ and $B E$ the same point, $\overrightarrow{\boldsymbol{A E}}=\overrightarrow{\boldsymbol{B D}}$ being used as component vectors.
$$
E \text { is }(17,-7,10)
$$

 \&

B1

B1

B1

M1

A1

A1

M1

A1

A1ft

dM1

A1

M1

A1

 \& 1 \&

Condone as a column vector

$$
\begin{aligned}
& \pm\left[\begin{array}{c}
1 \\
6 \\
12
\end{array}\right] \text { seen in (a)(ii) } \\
& \pm k\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right] \text { seen in a(ii) }
\end{aligned}
$$

Their $\overrightarrow{\boldsymbol{C B}}$ (or $\overrightarrow{\boldsymbol{B C}}$) correctly dotted with their $\overrightarrow{\boldsymbol{A B}}$ (or $\overrightarrow{\boldsymbol{B A}}$ or with the direction vector of l).

OE - scalar product evaluated

For RHS only OE - scalar product evaluated

CAO 18.6^{0}

Attempt at line AC - condone one component error.

Fully correct

ft on co-ordinates of B from (a)(i) and D (from line AC). Apply ISW if un-simplified form is simplified incorrectly.

Their $\overrightarrow{\boldsymbol{B} \boldsymbol{D}} \cdot \overrightarrow{\boldsymbol{A B}}$ evaluated in a correct manner and equated to 0 .

Accept as a column vector.

See notes for two possible ways.

Accept as a column vector.
\end{tabular}

\hline \& \& \& 13 \&

\hline
\end{tabular}

8 cont.	Notes
(a)(ii)	OE is such as $130=\sqrt{1^{2}+6^{2}+12^{2}} \sqrt{(-2)^{2}+6^{2}+8^{2}} \cos \theta$ for A1 (allow ± 130 on LHS) For guidance $\cos \theta= \pm \frac{130}{\sqrt{181} \sqrt{104}}$ or ± 0.9475 are two alternatives for the $\mathbf{A 1}$ mark. Candidates who use $\left[\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right]$ should get the equivalent of $\pm \frac{65}{\sqrt{181} \sqrt{26}}$ or ± 0.9475 Alternative Method-cosine rule $A B^{2}=2^{2}+6^{2}+8^{2}(=104)$ (B1) $B C^{2}=1^{2}+6^{2}+12^{2}(=181)$ (B1) $\left.A C^{2}=3^{2}+0^{2}+4^{2}=25\right)$ Cosine rule: $\cos A B C=\frac{A B^{2}+B C^{2}-A C^{2}}{2 . A B \cdot B C}=\frac{104+181-25}{2 \sqrt{104} \sqrt{181}} \quad(\mathbf{M 1})(\mathbf{A} 1)(\sim 0.9475 \ldots) A B C=18.6^{0}$ (A1) (CAO)
(b)	The line through A and C and hence the co-ordinates of D could be found using vector $\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]$ as the direction vector or $C(0,-1,-2)$ as the known point rather than $A(3,-1,2)$ so check answers that may differ to those in the main scheme.
(b)	Having found $\overrightarrow{\boldsymbol{B D}}$ they may use Pythagoras to find D before finding E rather than the dot product. $\begin{gathered} B D^{2}+A B^{2}=A D^{2} \\ (2-3 \mu)^{2}+(-6)^{2}+(-8-4 \mu)^{2}+(-2)^{2}+6^{2}+8^{2}=(-3 \mu)^{2}+0^{2}+(-4 \mu)^{2} \\ \mu=-4 \quad \mathbf{M 1} \quad \text { (linear equation in } \mu \text { and solving }) \\ D \text { is }(15,-1,18) \text { A1 } \end{gathered}$
(b)	Method 1 for finding E - equal vectors $\overrightarrow{\boldsymbol{D E}}=\overrightarrow{\boldsymbol{B A}} \rightarrow \overrightarrow{\boldsymbol{O E}}-\left[\begin{array}{c}15 \\ -1 \\ 18\end{array}\right]=\left[\begin{array}{c}2 \\ -6 \\ -8\end{array}\right] \mathbf{M 1}$ correctly formed $\rightarrow \overrightarrow{\boldsymbol{O E}}=\left[\begin{array}{c}17 \\ -7 \\ 10\end{array}\right] \mathbf{A 1}$ Could equally use $\overrightarrow{\boldsymbol{A E}}=\overrightarrow{\boldsymbol{B D}}$. Using symmetry of $\overrightarrow{\boldsymbol{D E}}$ with $\overrightarrow{\boldsymbol{B A}}$ it is also possible to write down the co-ordinates of E so NMS scores $\mathbf{B 2}$. Method 2 for finding E - mid-point of AD and BE If M is mid-point of $A D$ then M is $(9,-1,10) \quad$ M1 (Since M is MP of $B E) \quad E$ is $(17,-7,10) \quad$ A1

[^0]: Copyright © 2018 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

