

A-level Mathematics

MPC4-Pure Core 4 Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Rey to mark scheme abbreviations	
Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment		
(a)	$10 + 24x - 12x^2$					
(a)	= A(3-x)(1+4x) + B(1+4x) + C(3-x)	M1		PI by <i>B</i> or <i>C</i> being correct.		
	$\begin{array}{l} A = 3 \\ B = -2 \end{array}$	B1		Could be spotted		
	B = -Z $C = 1$	A1 A1	4			
(b)	$\int 3 - \frac{2}{3-x} + \frac{1}{1+4x} dx = 3x$	B1ft		ft on their value of <i>A</i> .		
	$+r\ln(3-x) + s\ln(1+4x)$	M1				
	$+2\ln(3-x) + \frac{1}{4}\ln(1+4x)$	A1ft		ft on their values of <i>B</i> and <i>C</i> .		
	$\int_{0}^{2} f(x) dx = \left(3 \times 2 + 2 \ln 1 + \frac{1}{4} \ln 9\right)$					
	- 0	M1		Correct use of $F(2) - F(0)$ for their		
	$-(3 \times 0 + 2 \ln 3 + \frac{1}{4} \ln 1)$			$Ax + r \ln(3 - x) + s \ln(1 + 4x)$ form but 0 and ln 1 = 0 can be PI		
	$= 6 - \frac{3}{2} \ln 3$	A1	5			
			9			
(a)						
(a)	PI by B or C being correct covers case(s) such as the den	ominato	r(c) ctill i	actuded at the initial line but not then		
(a)	used when finding B or C.	omnator	i (S) Still li	leidded at the mitial me but not then		
(2)	Dy long division					
(a)	By long division3					
	$-4x^2 + 11x + 3\overline{\big -12x^2 + 24x + 10}$					
	$\frac{-12x^2+33x+9}{-9x+1}$					
	$\frac{-9x+1}{(3-x)(1+4x)} = \frac{B}{3-x} + \frac{C}{1+4x}$					
	-9x + 1 = B(1 + 4x) + C(3 - x)	(M1)		PI by <i>B</i> or <i>C</i> correct		
	B = -2	(A1)		,		
	C = 1	(A1)				
	A = 3	(B1)	(4)			
	NMS or cover up rule scores					
	A = 3	(B1)				
	B = -2 or $C = 1$	(B2)		Either correct		
	Both B and C correct	(+B1)	(4)			
(b)	Condone missing brackets with $\ln(3 - x)$ and $\ln(1 + 4x)$	α) provid	ed recov	ered when using limits.		
	Beware candidate who changes $-\frac{2}{3-x}$ to $\frac{2}{x-3}$ and gets 2	$\ln(x-3)$)which is	n't valid – only award the first M1 if		
	they clearly use $2\ln x-3 $ in this case.					
L						

Q2 Solution Mark Total Comment

	$ \begin{array}{c} 3 \\ \alpha \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{8} \\ $			or Pythagoras		
(a)	$\tan\alpha = \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}$	B1		AG - must see V6 in this approach		
	$\tan\beta = (\pm)\frac{1}{\sqrt{8}}$ $\tan\beta = -\frac{1}{\sqrt{8}}$	M1		Either $\frac{1}{\sqrt{8}}$ or $-\frac{1}{\sqrt{8}}$		
	$\tan\beta = -\frac{1}{\sqrt{8}}$	A1	3	ACF: e.g. $-\frac{1}{2\sqrt{2}}$ or $-\frac{\sqrt{2}}{4}$ etc.		
(b)	$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$					
	$=\frac{\sqrt{2}-\left(-\frac{1}{\sqrt{8}}\right)}{1+\sqrt{2}\left(-\frac{1}{\sqrt{8}}\right)}$	M1		Correct identity with $tan\alpha = \sqrt{2}$ and their $tan\beta$ value correctly substituted.		
	$=\frac{5}{2}\sqrt{2}$	A1	2	OE – accept if written as $\frac{5\sqrt{2}}{2}$ etc.		
	2			NMS scores $0/2$.		
			5			
	Candidates who find α and/or β as 54.7° and 160.5° and use these to find $\tan \alpha$ and $\tan \beta$ score 0 marks in part (a) but can score in part (b) provided exact values for $\tan \alpha$ and $\tan \beta$ are used - PI by a correct final answer of $\frac{5}{2}\sqrt{2}$.					
(a)	If $\cos \alpha = \frac{\sqrt{3}}{3}$ is replaced by $\cos \alpha = \frac{1}{\sqrt{3}}$ the right-angled triangle will have sides $1,\sqrt{2}$ and $\sqrt{3}$.					
	As an alternative to the right angled triangle they might use appropriate identities					
	e.g. $\sin^2 \alpha + \cos^2 \alpha = 1 \rightarrow \sin^2 \alpha = \frac{6}{9} \rightarrow \sin \alpha = \sqrt{\frac{6}{9}} \rightarrow \tan \alpha = \sqrt{\frac{6}{9}} / \frac{\sqrt{3}}{3}$ OE $\rightarrow \tan \alpha = \sqrt{2}$ B1					
	or $1 + \tan^2 \alpha = \sec^2 \alpha \rightarrow 1 + \tan^2 \alpha = \frac{9}{3} \rightarrow \tan^2 \alpha = \frac{9}{3}$	$= 2 \rightarrow$	$\tan \alpha =$	√2 B1		
	or $1 + \cot^2\beta = \csc^2\beta = \frac{1}{\sin^2\beta} \rightarrow \cot^2\beta = 8 \rightarrow \frac{1}{\sin^2\beta}$	$\tan\beta =$	$(\pm)\frac{1}{\sqrt{8}}$	M1 $\rightarrow \tan \beta = -\frac{1}{\sqrt{8}}$ OE A1		
	Candidates who just state such as $\tan \beta = \tan \left(sin^{-1} \right)$	$\left(\frac{1}{3}\right) = -$	$-\frac{1}{\sqrt{8}}$ so	core 0/2 etc.		
(b)	$\tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\sin\alpha\cos\beta - \cos\alpha\sin\beta}{\cos\alpha\cos\beta + \sin\alpha\sin\beta} = \frac{\binom{\sqrt{6}}{3}\left(-\frac{\sqrt{8}}{3}\right)}{\binom{\sqrt{3}}{3}\left(-\frac{\sqrt{8}}{3}\right)}$	$\frac{1}{3} - \left(\frac{\sqrt{3}}{3}\right) \left(\frac{1}{3}\right) + \left(\frac{\sqrt{6}}{3}\right) \left(\frac{1}{3}\right)$)) M1	Correct identity with correct		
	substitution of $\cos \alpha = \frac{\sqrt{3}}{3}$, $\sin \beta = \frac{1}{3}$ and their values of	f sinα a	nd cosß	$\rightarrow \tan(\alpha - \beta) = \frac{5}{2}\sqrt{2}$ A1		

Q3	Solution	Mark	Total	Comment

			1			
(a)	$(1-9x)^{\frac{2}{3}} = 1 + \frac{2}{3}(-9x) + kx^{2}$	M1		or better with $k \neq 0$		
	$= 1 - 6x - 9x^2$	A1	2	Coefficients must be simplified.		
(b)(i)	$(64 - 9x)^{\frac{2}{3}} = 64^{\frac{2}{3}} \left(1 - \frac{9}{64}x\right)^{\frac{2}{3}}$	B1		ACF – e.g. $16\left(1-\frac{9}{64}x\right)^{\frac{2}{3}}$		
	$\left(1 - \frac{9}{64}x\right)^{\frac{2}{3}} = 1 + \frac{2}{3} \times \left(-\frac{9}{64}x\right) + \frac{2}{3} \times \frac{-1}{3} \left(-\frac{9}{64}x\right)^{2} \times \frac{1}{2}$	M1		OE – condone missing brackets.		
	$(64 - 9x)^{\frac{2}{3}} = 16 - \frac{3}{2}x - \frac{9}{256}x^2$	A1	3	Accept $16\left(1 - \frac{3}{32}x - \frac{9}{4096}x^2\right)$		
(b)(ii)	Substituting $x = -\frac{1}{3}$ (OE) into their (b)(i)	М1		$64 - 9x = 67 \Rightarrow x = -\frac{1}{3} \text{ or } -\frac{3}{9}$		
	$\left(67^{\frac{2}{3}}\right) = 16 + \frac{127}{256}$	A1	2	Must have correct expansion in (b)(i) and use $x = -\frac{1}{3}$.		
				OE for $\frac{127}{256}$ - e.g. $\frac{254}{512}$ etc.		
				NMS is 0/2 since 'Hence'		
			7			
(b)(i)	Some candidates omit <i>x</i> in their expansion and just find the coefficients or make other slips. Allow recovery if the correct full expansion is seen later. As a guide, check the answer line first for B1 M1 A1 .					
(b)(i)	Alt.1 – using (a)					
	After $(64 - 9x)^{\frac{2}{3}} = 64^{\frac{2}{3}} \left(1 - \frac{9}{64}x\right)^{\frac{2}{3}}$ (B1) then using	candida	ite's exp	bansion for (a) with x replaced by $\frac{x}{64}$,		
	$\left(1 - \frac{9}{64}x\right)^{\frac{2}{3}} = 1 - 6\left(\frac{x}{64}\right) - 9\left(\frac{x}{64}\right)^2$ (M1) $(64 - 9x)^{\frac{2}{3}} =$	16(1-	$\frac{3}{32}x - \frac{3}{32}x - \frac{3}$	$\frac{9}{4096}x^2$) OE (A1)		
	Alt. 2 – using binomial formula					
	$(64 - 9x)^{\frac{2}{3}} = 64^{\frac{2}{3}} + \frac{2}{3}64^{-\frac{1}{3}}(-9x) + \frac{2}{3}\cdot\left(-\frac{1}{3}\right)\cdot\frac{1}{2}64^{-\frac{4}{3}}$	$(-9x)^2$	(M1)	condone missing brackets		
	$= 16 - \frac{3}{2}x - \frac{9}{256}x^2 \text{or} 16$	$\left(1-\frac{3}{32}\right)$	$x - \frac{9}{4096}$	(x^2) OE (A2)		
(b)(ii)	Accept answer given as $16 \frac{127}{256}$ OE for final A1 mark.					

Q4	Solution	Mark	Total	Comment	
(a)(i)	$18\left(-\frac{2}{3}\right)^3 - 3\left(-\frac{2}{3}\right)^2 - 28\left(-\frac{2}{3}\right) - 12$	M1		Correct substitution of $x = -\frac{2}{3}$	
	$= 18 \times \left(-\frac{8}{27}\right) - 3\left(\frac{4}{9}\right) - 28\left(-\frac{2}{3}\right) - 12$			or better	
	= 0 (hence) factor	A1	2	Correct arithmetic and conclusion.	
(a)(ii)	By factors $6x^2 + bx - 6$ $= 6x^2 - 5x - 6$	M1 A1		'Spotting' $a = 6$ and $c = -6$.	
	(f(x)) = (3x+2)(3x+2)(2x-3) OE	A1	3	NMS scores 3/3 if correct	
(b)(i)	$18\sin 2\theta \cos \theta - 3\cos 2\theta + 20\sin \theta + 27$	B1		Correct identity used for $\sin 2\theta$.	
	$= 18 \times 2\sin\theta\cos\theta\cos\theta$				
	$-3(1-2\sin^2\theta) + 20\sin\theta + 27$ $= 36\sin\theta(1-\sin^2\theta) - 3 + 6\sin^2\theta + 20\sin\theta + 27$	B1 M1		Any correct identity used for $\cos 2\theta$. Use $\cos^2 \theta = 1 - \sin^2 \theta$ to obtain a cubic expression in $\sin \theta$ only.	
	$= -36\sin^3\theta + 6\sin^2\theta + 56\sin\theta + 24$				
	$(= -36x^3 + 6x^2 + 56x + 24)$			Do not award final A1 if division or	
	Equate to 0 and cancel down to the equation			changing signs occurs before equating to 0 or any error seen.	
	$18x^3 - 3x^2 - 28x - 12 = 0$	A1	4	Accept in terms of $\sin \theta$.	
(b)(ii)	(heta =) 3.87 , 5.55 CAO	B1B1	2	-1 for each extra sol ⁿ in $0 \le \theta \le 2\pi$	
			11		
(a)(i)	Must see arithmetic for A1 (minimum acceptable show	wn in scl	neme) =	$=-\frac{144}{27}-\frac{12}{9}+\frac{56}{3}-12$ is 'better'	
	For A1 we must see $= 0$ and conclusion. Might come				
	$f\left(-\frac{2}{3}\right) = 18\left(-\frac{2}{3}\right)^3 - 3\left(-\frac{2}{3}\right)^2 - 28\left(-\frac{2}{3}\right) - 12 = 1$	2 – 12 :	= 0 is no	ot sufficient arithmetic for A1 .	
(a)(ii)	For guidance, terms in x^2 give $-3 = 12 + 3b$ or terms	s in <i>x</i> giv	∕e −28 :	= -18 + 2b so $b = -5$.	
	Using long division by $(3x + 2)$, Quotient = $6x^2 - 5x + c$ M1 = $6x^2 - 5x - 6$ A1 then $f(x) = (3x + 2)(2x - 3)(3x + 2)$ A1 There must be NO remainder seen or implied by wrong arithmetic to earn the final A1.				
	Candidates who try to find and use the other (linear) f in (a)(i) score By factors, $9x^2 + bx + 4$ M1 = $9x^2 + 12x + 4$ A1 $f(x) = (2, 0)$ or, by long division, $9x^2 + 12x + c$ M1 = $9x^2 + 12x + 4$ A1 $f(x) = (2, 0)$	x – 3)(3	3x + 2)	(3x + 2) A1	
(b)(ii)	If (a)(ii) would score NR or no work seen the marks for	r (a)(ii) if	fearned	can be scored here.	
(b)(ii)	If 0/2 scored award B1 for both solutions correct to g correctly or truncated) but still apply -1 for any excess	eater a	ccuracy	3.871320 and 5.553457 (rounded	

correctly or truncated) but still apply -1 for any excess Condone answers given as $x = \cdots$ rather than $\theta = \cdots$

Ignore other factor (even if wrong) if it doesn't lead to any solutions.

Q5	Solution	Mark	Total	Comment
(a)(i)	4500	B1	1	
	1220	D 1	1	
(a)(ii)	1220	B1	1	
(a)(iii)	$4500e^{-\frac{1}{20}t} < 1500$			
	$\frac{1}{20}t > \ln 3$ or $-\frac{1}{20}t < \ln \frac{1}{3}$ or better	M1		Correctly converting from exponential to logarithmic form
	22	A1	2	Allow 21.97 NMS scores B2 for 22 or 21.97
(b)	$(Q = 4P \Rightarrow)$ $3000e^{-\frac{1}{40}t} = 4(4500)e^{-\frac{1}{20}t}$ OE	M1		Setting up a correct equation but M0 if logs not used later.
	$\frac{t}{40} = \ln 6$ or $-\frac{t}{40} = \ln \frac{1}{6}$ OE	A1		e.g. $\ln 3000 - \frac{t}{40} = \ln 18000 - \frac{t}{20}$
	72	A1	3	CAO
(c)(i)	$3000e^{-\frac{1}{40}T} - 4500e^{-\frac{1}{20}T} = 300$	M1		Setting up a correct equation – could include both x and T (or t).
	$\left(x = e^{-\frac{1}{40}T}\right) \Rightarrow 3000x - 4500x^2 = 300$	A1	2	Correct quadratic in x (ACF) - apply ISW for wrong cancelling or
	$15x^2 - 10x + 1 = 0$			rearranging.
(c)(ii)	$(x) = \frac{10 \pm \sqrt{40}}{30} \qquad (0.12 \text{ or } 0.54)$	dM1		
	T = 24.3(41)	A1		Allow 24
	= 170 (days)	A1	3	Accept October 18 th if 170 not seen.
			12	
(a)(iii)	Condone use of = instead of < or poor/incorrect use o 21.97).	f inequa	lity sign	s for M1 but for A1 we must see 22 (or
	M1 mark is PI by such as $\frac{1}{20}t = 1.09$ OE.			
(b)	Misinterpretation of P = 4Q scores 0/3 as it should lea	d to a n	egative	value for t.
	A1 mark is PI by such as $\frac{t}{40} = 1.79$ OE			
(c)(i)	The M1 awarded for setting up an equation in T (or t) immediately write down the correct quadratic in x.	is auton	natically	earned if they miss this line out and
	Allow = replaced by an inequality for the M1 mark but	t the exp	oression	in x must be an equation for A1.
(c)(ii)	For dM1 mark ft on any wrong quadratic – check met	hod use	d or ans	wers given.

Q6	Solution	Mark	Total	Comment
(a)	$(k =) \pi$	B1	1	
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos 3y) = -3\sin 3y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1		
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\sin^2 3x) = \frac{\mathrm{d}y}{\mathrm{d}x}\sin^2 3x + ky\sin 3x\cos 3x$	M1		Second term could be kysin6x
	$= \frac{\mathrm{d}y}{\mathrm{d}x}\sin^2 3x + 6y\sin 3x\cos 3x$	A1		or $\frac{dy}{dx} \sin^2 3x + 3y \sin 6x$ OE
	$\frac{\mathrm{d}}{\mathrm{d}x}(x+k) = 1$	B1		
	$\frac{\mathrm{d}y}{\mathrm{d}x}\left(-3\mathrm{sin}3y+\mathrm{sin}^23x\right) = 1-6y\mathrm{sin}3x\mathrm{cos}3x$	М1		Factor out correctly $\frac{dy}{dx}$ from their two
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - 6y\sin 3x\cos 3x}{-3\sin 3y + \sin^2 3x}$	A1	6	terms. OE
(c)				
(0)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - 6\left(\frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2}\right)\cos\left(\frac{3\pi}{2}\right)}{-3\sin\left(\frac{9\pi}{2}\right) + \sin^2\left(\frac{3\pi}{2}\right)}$	M1		Using $x = \frac{\pi}{2}$ and $y = \frac{3\pi}{2}$. PI by
	$-3\sin\left(\frac{-3}{2}\right) + \sin^2\left(\frac{-3}{2}\right)$			$m = -\frac{1}{2}$ from a correct derivative. If $\frac{dy}{dx}$ is wrong we must see evidence
				of correct substitution.
	$1 7\pi$			OE: e.g. $y = \frac{7\pi}{4} - 0.5x$ but must be
	$y = -\frac{1}{2}x + \frac{7\pi}{4}$	A1	2	y = mx + c form with c exact. Must be from correct derivative.
			9	
(b)	Condone a spurious $\frac{dy}{dx}$ on LHS for the first 4 marks but	penalis	e if inclu	ided in finding $\frac{dy}{dx}$.
(b)	Alternative for product rule for an attempt to change s	$\sin^2 3x$ t	$0\frac{1}{2}(1-$	$\cos 6x$) – must involve $\cos 6x$ -
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y.\frac{1}{2}(1-\cos 6x)\right) = \frac{\mathrm{d}y}{\mathrm{d}x} \times \text{their } \frac{1}{2}(1-\cos 6x) + \frac{\mathrm{d}y}{\mathrm{d}x} $	ky sin 6	x M1	$= \frac{dy}{dx} \cdot \frac{1}{2}(1 - \cos 6x) + 3y \sin 6x$ A1
	They would then earn the second M1 for factoring out	three te	erms inv	olving $\frac{dy}{dx}$ (even if identity used is
	incorrect) then $\frac{dy}{dx} = \frac{1-3y\sin 6x}{\frac{1}{2}(1-\cos 6x)-3\sin 3y}$ OE A1			
(b)	If not scored in (b) the final M1 A1 marks can be earne	d if com	pleted i	n part (c).

7	Solution	Mark	Total	Comment
(a)	$u = 7 + 2x^2$ gives $\frac{\mathrm{du}}{\mathrm{dx}} = 4x$	M1		OE - e.g. du = 4x dx etc.
	$\int \frac{x}{(7+2x^2)^2} \mathrm{d}x = \int \frac{1}{4u^2} \mathrm{d}u = -\frac{1}{4u}$	dM1		Integral all in u of the form $\int \frac{k}{u^2} du$ leading to $\pm \frac{k}{u}$.
	$=-rac{1}{4(7+2x^2)}$ (+c)	A1	3	OE – e.g. $-\frac{1}{4}(7+2x^2)^{-1}$
(b)	$\int e^{-4y} dy = \int \frac{3x}{(7+2x^2)^2} dx$	B1		Correct separation seen and notation including integral signs and dy & dx.
	$LHS = -\frac{1}{4}e^{-4y}$	B1		
	$RHS = -\frac{3}{4(7+2x^2)}$	B1ft		ft on 3 x (a) from a correct integrand
	$-\frac{1}{4}e^{-4y} = -\frac{3}{4(7+2x^2)} + C$			
	$x = 2$ and $y = 0$ to find C $\left(= -\frac{1}{5}\right)$	M1		Used correctly in an expression of the form $pe^{-4y} = \frac{q}{7+2x^2} + C$
	$-\frac{1}{4}e^{-4y} = -\frac{3}{4(7+2x^2)} - \frac{1}{5} \text{OE}$	A1		$10111 \ pe^{-y} = \frac{1}{7+2x^2} + c$
	$y = -\frac{1}{4}\ln\left(\frac{3}{7+2x^2} + \frac{4}{5}\right)$	A1	6	ACF - e.g. $-\frac{1}{4}\ln\left(\frac{43+8x^2}{5(7+2x^2)}\right)$ or
				$\frac{1}{4}\ln\left(\frac{5(7+2x^2)}{43+8x^2}\right)$ etc.
			9	
(a)	Let $u = 2x^2$, $\frac{du}{dx} = 4x$ OE M1 $\int \frac{x}{(7+2x^2)^2} dx = \int \frac{1}{4x^2} dx$	$\frac{1}{(7+u)^2}$ d	<i>u</i> = –	$\frac{1}{4(7+u)}$ dM1 = $-\frac{1}{4(7+2x^2)}$ (+c) A1
(a)	By 'inspection' $\int \frac{x}{(7+2x^2)^2} dx = \frac{k}{7+2x^2}$ M1 dM1 = -	$\frac{1}{4(7+2x^2)}$	$\frac{1}{2}$ (+ c	r) A1
(b)	If the 3 is taken to the LHS, marks are			
	$\int \frac{1}{3}e^{-4y} dy = \int \frac{x}{(7+2x^2)^2} dx \mathbf{B1} \to \ -\frac{1}{12}e^{-4y} \mathbf{B1} =$	$=-\frac{1}{4(7+1)}$	$\frac{1}{(2x^2)}$ (+c) B1ft
	Using $x = 2$ and $y = 0$ to find C from and expression c $-\frac{1}{12}e^{-4y} = -\frac{1}{4(7+2x^2)} - \frac{1}{15}$ A1 $\rightarrow y = -\frac{1}{4}\ln\left(\frac{3}{7+2}\right)$			10/
(b)	If any correct solution in the form $y = f(x)$ is seen the	en awaro	d the fin	al A mark and apply ISW.
(b)	Be very generous with placement of dy and dx provide	d they a	ren't pla	aced in front of any function.
(b)	SC If the candidate finds a correct value for c from a cc slip when writing out their solution award the first A1 a		-	-

8	Solution	Mark	Total	Comment
(a)(i)	B is (1,5,10)	B1	1	Condone as a column vector
(a)(ii)	$\begin{bmatrix} 1\\6\\12\end{bmatrix}$	B1		$\pm \begin{bmatrix} 1\\6\\12 \end{bmatrix}$ seen in (a)(ii)
	$\begin{bmatrix} -2\\6\\8 \end{bmatrix}$	B1		$\pm k \begin{bmatrix} -1\\3\\4 \end{bmatrix}$ seen in a(ii)
	$\begin{bmatrix} 1\\6\\12 \end{bmatrix} \cdot \begin{bmatrix} -2\\6\\8 \end{bmatrix} = (1)(-2) + (6)(6) + (12)(8)$	М1		Their \overrightarrow{CB} (or \overrightarrow{BC}) correctly dotted with their \overrightarrow{AB} (or \overrightarrow{BA} or with the direction vector of l).
	$\sqrt{1^2 + 6^2 + 12^2} \sqrt{(-2)^2 + 6^2 + 8^2} \cos \theta = \pm 130$ or $+130$	A1		OE – scalar product evaluated
	$(\cos ABC) = \frac{\pm 130}{\sqrt{1^2 + 6^2 + 12^2}\sqrt{(-2)^2 + 6^2 + 8^2}}$ (acute angle ABC) = 18.6°			For RHS only OE – scalar product evaluated
	(acute angle ABC) – 10.0	A1	5	CAO 18.6 ⁰
(b)	E A C D B Line through A and C has equation			
	$(\mathbf{r}) = \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix} + \mu \begin{bmatrix} -3\\ 0\\ -4 \end{bmatrix}$	M1		Attempt at line AC - condone one component error.
		A1		Fully correct
	$\overrightarrow{BD} = \begin{bmatrix} 3\\-1\\2 \end{bmatrix} + \mu \begin{bmatrix} -3\\0\\-4 \end{bmatrix} - \begin{bmatrix} 1\\5\\10 \end{bmatrix} \qquad \left(= \begin{bmatrix} 2-3\mu\\-6\\-8-4\mu \end{bmatrix} \right)$ $\overrightarrow{BD}.\overrightarrow{AB} = 0$	A1ft		ft on co-ordinates of B from (a)(i) and D (from line AC). Apply ISW if un-simplified form is simplified
	$(2 - 3\mu)(-2) + (-6)(6) + (-8 - 4\mu)(8) = 0$ $(\mu = -4)$	dM1		incorrectly. Their \overrightarrow{BD} . \overrightarrow{AB} evaluated in a correct manner and equated to 0.
	D is (15, -1,18)	A1		Accept as a column vector.
	Finding E by any appropriate method - symmetry, mid-point of AD and BE the same point, $\overrightarrow{AE} = \overrightarrow{BD}$	M1		See notes for two possible ways.
	being used as component vectors. E is (17, -7, 10)	A1	7	Accept as a column vector.
			13	

8 cont.	Notes
(a)(ii)	OE is such as $130 = \sqrt{1^2 + 6^2 + 12^2} \sqrt{(-2)^2 + 6^2 + 8^2} \cos \theta$ for A1 (allow ± 130 on LHS)
	For guidance $\cos \theta = \pm \frac{130}{\sqrt{181}\sqrt{104}}$ or ± 0.9475 are two alternatives for the A1 mark.
	Candidates who use $\begin{bmatrix} -1\\3\\4 \end{bmatrix}$ should get the equivalent of $\pm \frac{65}{\sqrt{181}\sqrt{26}}$ or ± 0.9475
	Alternative Method- cosine rule
	$AB^2 = 2^2 + 6^2 + 8^2 (= 104)$ (B1) $BC^2 = 1^2 + 6^2 + 12^2 (= 181)$ (B1) $AC^2 = 3^2 + 0^2 + 4^2 = 25$)
	Cosine rule: $cosABC = \frac{AB^2 + BC^2 - AC^2}{2.AB.BC} = \frac{104 + 181 - 25}{2\sqrt{104}\sqrt{181}}$ (M1) (A1) (~0.9475) $ABC = 18.6^{\circ}$ (A1) (CAO)
(b)	The line through A and C and hence the co-ordinates of D could be found using vector $\begin{bmatrix} 3\\0\\4 \end{bmatrix}$ as the direction
	vector or $C(0, -1, -2)$ as the known point rather than $A(3, -1, 2)$ so check answers that may differ to those in the main scheme.
(b)	Having found \overrightarrow{BD} they may use Pythagoras to find D before finding E rather than the dot product.
	$BD^2 + AB^2 = AD^2$
	$(2 - 3\mu)^2 + (-6)^2 + (-8 - 4\mu)^2 + (-2)^2 + 6^2 + 8^2 = (-3\mu)^2 + 0^2 + (-4\mu)^2$
	$\mu = -4$ M1 (linear equation in μ and solving)
	D is (15, -1,18) A1
(b)	Method 1 for finding E - equal vectors
	$\overrightarrow{DE} = \overrightarrow{BA} \rightarrow \overrightarrow{OE} - \begin{bmatrix} 15\\-1\\18 \end{bmatrix} = \begin{bmatrix} 2\\-6\\-8 \end{bmatrix}$ M1 correctly formed $\rightarrow \overrightarrow{OE} = \begin{bmatrix} 17\\-7\\10 \end{bmatrix}$ A1
	Could equally use $\overrightarrow{AE} = \overrightarrow{BD}$.
	Using symmetry of \overrightarrow{DE} with \overrightarrow{BA} it is also possible to write down the co-ordinates of E so NMS scores B2 .
	Method 2 for finding E – mid-point of AD and BE
	If M is mid-point of AD then M is $(9, -1, 10)$ M1 (Since M is MP of BE) E is $(17, -7, 10)$ A1