

A-LEVEL Mathematics

MPC4 Pure Core 4 Mark scheme

6360

June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment	
(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = 3(t-1)^2$	B1		ACF e.g. $3t^2 - 6t + 3$	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 3 + 16t^{-3}$	B1		ACF	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3+16t^{-3}}{3(t-1)^2}$	B1ft	3	ACF: must see $\frac{dy}{dx} = \cdots$ but ft on their $\frac{dy_{dt}}{dx_{dt}}$ provided numerator is of the form $3 \pm kt^{-3}$	
				and denominator is a quadratic in <i>t</i> .	
	Accept missing $\frac{dx}{dt}$ and/or $\frac{dy}{dt}$ or poor notation but must see $\frac{dy}{dt} = \dots$ on final line				
	If answer left as the product $\frac{1}{\sqrt{1-x}} \times 3 + 16t^{-3}$ with missing brackets then B0(ft) but can score the next B1				
	in part (b). $3(t-1)^2$		-		
(b)	At $t = 2$, $m = \frac{3 + \frac{16}{8}}{3 \times 1^2} = \frac{5}{3}$	B1		From a correct $\frac{dy}{dx}$. PI by next line.	
	Gradient of normal $= -\frac{3}{5}$				
	(Normal is) $y - 4 = -\frac{3}{5}(x - 1)$	M1		Use of their $-\frac{1}{m}$ with $x = 1$ and $y = 4$.	
	3x + 5y - 23 = 0	A1	3	Integer coefficients with all terms on one side (in any order) and $= 0$ on the other.	
	If $y = mx + c$ is used they must use $x = 1$ and	y = 4 to z	find a va	lue for c to earn the M1 mark.	
	An answer such as $0 = -10y - 6x + 46$ would score A1 but $5y = -3x + 23$ or $3x + 5y = 23$ is A0.				
	Total		6		

Q2	Solution	Mark	Total	Comment
(a)	$R = \sqrt{58}$	B1		Must see $R = \sqrt{58}$, $R = \pm \sqrt{58}$ is B0
	$\sqrt{58}\cos\alpha = 7 \text{ or } \sqrt{58}\sin\alpha = 3 \text{ or } \tan\alpha = \frac{3}{7}$	M1		ft on their value of <i>R</i> .
	$\alpha = 23.2^{\circ}$	A1	3	Must see $\alpha = 23.2^{\circ}$ Allow AWRT 22.9° to 23.3°.
	Accept any decimal equivalent to $\sqrt{58}$ to at lea	st 3 SF pr	ovided i	t is rounded correctly – e.g. 7.62, 7.616 etc.
	e.g. using $R = 7.61$ to get $\alpha = 23.1^{\circ}$ would see	ore B0 M	[1 A1 .	
	Explicit use of $\cos \alpha = 7$ and $\sin \alpha = 3$ to get the	o tan $\alpha =$	$\frac{3}{7}$ is M0	A0 but marks in (b) are available.
	Candidates who write $R\cos\alpha = 7$ and $R\sin\alpha = A1$.	3 withou	t finding	g <i>R</i> but reach a correct value for α score M1
	An expression of the form $Rcos(x - \alpha)$ can see	ore the B	l and/or	A1 if <i>R</i> and/or α are correct.
(b)	$\cos^{-1}\left(\frac{5}{\sqrt{58}}\right)$ or 48.964	M1		Finding an angle from $\cos^{-1}\left(\frac{5}{R}\right)$.
	and 311.0359	dM1		For $360 - \cos^{-1}\left(\frac{5}{R}\right)$ only between 0^0 and
			•	360 ⁰
	36.1° and 167.1°	A1	3	CAO. These two values only .
	Question says 'Use your answer to part (a)' so	using a di	fferent r	nethod or NMS is $0/3$.
	For M1 and dM1 marks accept 2 SF or better.			
	dM1 is for correct ft fourth quadrant solution (360° – first solution) and NO others between 0° and 360° .			
	The dM1 mark could be PI if candidate goes straight to the two correct answers from the M1 mark.			
	Ignore any solutions outside the interval $0^0 \le \theta \le 180^0$ for final A1.			
	Condone omission of degree symbol or other letter in place of θ .			
	Total		6	

Q3	Solution	Mark	Total	Comment
(a)(i)	$f\left(-\frac{2}{3}\right) = 6\left(-\frac{2}{3}\right)^3 - 11\left(-\frac{2}{3}\right)^2 + 2\left(-\frac{2}{3}\right) + 8$	M1		Attempt at $f\left(-\frac{2}{3}\right)$
	= 0 (hence) factor	A1	2	Correct arithmetic seen and conclusion.
	Question says 'Use the factor theorem' so long div	vision scor	tes 0/2 .	
	Candidate could imply conclusion at beginning, e.	g. 3 <i>x</i> + 2	is a fact	tor if $f\left(-\frac{2}{3}\right) = 0$ etc.
	Just $f\left(-\frac{2}{3}\right) = 6\left(-\frac{2}{3}\right)^3 - 11\left(-\frac{2}{3}\right)^2 + 2\left(-\frac{2}{3}\right) + $	8 = -8 +	-8=0a	and conclusion is M1 A0 as no 'arithmetic'
	but seeing such as $f\left(-\frac{2}{3}\right) = -\frac{48}{27} - \frac{44}{9} - \frac{4}{3} + 8$ C	DE = 0 and	nd concl	usion would score M1 A1.
(a)(ii)	Attempt at quadratic factor	M1		e.g. long division or factorising
	$2x^2 - 5x + 4$	A1		Correct quadratic
	$b^2 - 4ac = 25 - 32$ or -7	dM1		Correct $b^2 - 4ac$ for their quadratic
	< 0 OE so no (more) factors / roots / solutions	A1	4	Valid reason and conclusion needed.
	To earn the M1 for any approach we must see eith	er $(2x^2 -$	5x + c) or $(2x^2 + bx + 4)$ PI.
	If $\left(x + \frac{2}{3}\right)$ is used instead of $(3x + 2)$ we need (62)	$x^2 - 15x$	+ <i>c</i>) or	$(6x^2 + bx + 12)$ for M1
	The d M1 is for a correct $b^2 - 4ac$ for their quad	ratic (can	be unsir	nplified) – e.g. $5^2 - 4(2)(4)$.
	If using completing the square we need to see the	form $p(x)$	$(-q)^2 =$	<i>r</i> correct for their quadratic
	For final A1, candidates must have a correct quad	ratic, cor	rect disc	criminant and correct conclusion.
(b)	$g(x) = (3x + 2)(2x^2 - 5x + 4)$			
	-(3x+2)(2x-2)			or $g(x) = 6x^3 - 17x^2 + 4x + 12$
	$= (3x+2)(2x^2-7x+6)$	M1		Attempt at quadratic factor
	= (3x+2)(x-2)(2x-3)	A1	2	Correct three linear factors
	If using known factor M1 could be earned for $(3x + 2)(2x^2 - 7x + c)$ or $(3x + 2)(2x^2 + bx + 6)$			
	If using another factor M1 could be earned for $(x $ or $(2x)$	$(-2)(6x^{2})(-3)(3x)$	$-5x + \frac{2}{2} - 4x$	c) or $(x-2)(6x^2 + bx - 6)$ + c) or $(2x-3)(3x^2 + bx - 4)$
	If a calculator is used to solve the cubic in order to	factorise	, it score	es 0/2 or 2/2
	e.g. $\left(x+\frac{2}{3}\right)\left(x-2\right)\left(x-\frac{3}{2}\right)$ would score 0/2 but 6	$5\left(x+\frac{2}{3}\right)$	(x – 2)	$\left(x-\frac{3}{2}\right)$ would score 2/2.
(c)	$h(x) = \frac{g(x)}{1 - \frac{g(x)}{1$			
	$6x^3 - 5x^2 - 6x$			Attempt at full linear factors and
	$=\frac{(3x+2)(x-2)(2x-3)}{x(3x+2)(2x-3)}$	M1		PI by correct answer in any form.
	$\left(=\frac{x-2}{x}\right) = 1-2x^{-1}$	A1	2	Final answer must be seen in this form.
	For M1 we need to see their three linear factors fro	om (b)	ncelled d	own hy at least one factor
	No need to state $n = 1$ $a = -2$ and $n = -1$; apply ISW once correct answer seen			
	Total		10	
	lotai		10	

Q4	Solution	Mark	Total	Comment	
(a)	$(1-4x)^{-\frac{1}{2}} = 1 + 2x + kx^2$	M1		$k \neq 0$	
	$= 1 + 2x + 6x^2$	A1	2		
(b)	$(16+4x)^{\frac{3}{4}} = 16^{\frac{3}{4}} \left(1+\frac{4x}{16}\right)^{\frac{3}{4}}$	B1		OE e.g. $8\left(1+\frac{x}{4}\right)^{\frac{3}{4}}$	
	$\left(1+\frac{4}{16}x\right)^{\frac{3}{4}} = 1+\frac{3}{4}\cdot\left(\frac{4x}{16}\right)+\frac{3}{4}\cdot-\frac{1}{4}\left(\frac{4x}{16}\right)^{2}\cdot\frac{1}{2}$	M1		Condone missing / poor use of brackets	
	$(16+4x)^{\frac{3}{4}}=$				
	$8\left(1+\frac{3}{16}x-\frac{3}{512}x^2\right)$ or $8+\frac{3}{2}x-\frac{3}{64}x^2$	A1	3	Must be 8 not $16^{3/4}$	
	or $(16+4x)^{\frac{3}{4}} = 16^{\frac{3}{4}} + \frac{3}{4}(16)^{-\frac{1}{4}}(4x) + \frac{3}{4} - \frac{3}{4}$	$\frac{1}{4}(16)^{-1}$	$\frac{5}{4}(4x)^2$.	$\frac{1}{2} \dots \mathbf{M1} = 8 + \frac{3}{2}x - \frac{3}{64}x^2 \mathbf{A2}$	
(c)	$(1+2x+6x^2)\left(8+\frac{3}{2}x-\frac{3}{64}x^2\right)$	M1		Setting up the product of their two expansions - be convinced	
	$= 8 + \frac{35}{2}x + \frac{3261}{64}x^2$	A1	2	CAO	
	Coefficients must be in simplest form or as full exact decimals = $8 + 17.5x + 50.953125x^2$				
	Allow mixed numbers – e.g. $8 + 17\frac{1}{2}x + 50\frac{61}{64}x^2$	2.			
	Allow terms in any order.				
	Ignore terms in higher powers of x even if wrong.				
	Total		7		

Q5	Solution	Mark	Total	Comment	
(a)	$\sin 3\theta = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$	B1		Use of the correct sin $(A + B)$ identity. PI by next two B marks	
	$= 2 \sin\theta \cos\theta \cos\theta$	B1		Use of the correct sin 2A identity	
	$+(1-2\sin^2\theta)\sin\theta$	B1		Use of a correct cos 2A identity in ACF	
	$= 3\sin\theta - 4\sin^3\theta$	B1	4	AG – be convinced	
	For third B1 they could use $\cos^2\theta - \sin^2\theta$ or $2\cos^2\theta$	$\theta - 1 r$	ather tha	an $1 - 2\sin^2\theta$ for $\cos 2\theta$.	
	Condone missing brackets only if recovered.				
	For fourth B1 we must see $\cos^2\theta = 1 - \sin^2\theta$ used	l to obta	in the pr	inted answer and no errors.	
	Condone use of any other letter in place of θ for first	t 3 mark	s but wi	ithhold the final B1 .	
(b)	From (a) $2\sin^3\theta = \frac{1}{2}(3\sin\theta - \sin^3\theta)$	B1		OE: ACF to enable them to replace $2\sin^3\theta$.	
	$\int 2\sin^3\theta \mathrm{d}\theta = p\cos\theta + q\cos3\theta$	M1		p and q are any constants	
	$=-\frac{3}{2}\cos\theta+\frac{1}{6}\cos3\theta$	A1		Both integrated correctly	
	$\int 3 d\theta = 3\theta$	B1		Must be 3θ	
	$\int = \left[-\frac{3}{2}\cos\frac{\pi}{6} + \frac{1}{6}\cos\frac{3\pi}{6} + 3\frac{\pi}{6} \right]$				
	$-\left[-\frac{3}{2}\cos 0 + \frac{1}{6}\cos 0 + (0)\right]$	dM1		$F\left(\frac{\pi}{6}\right) - F(0)$ correct for their integrated	
	$= \left[-\frac{3\sqrt{3}}{4} + (0) + \frac{\pi}{2} \right] - \left[-\frac{3}{2} + \frac{1}{6} + (0) \right]$			function - no MC allowed here.	
	$= -\frac{3\sqrt{3}}{4} + \frac{4}{3} + \frac{\pi}{2}$	A1	6	ACF but must be exact. Apply ISW (if necessary) after correct answer seen.	
	The dM1 and A1 marks can be earned if candidate's 3θ term is 3x say.				
	The dM1 mark can be PI by correct final answer.				
	With a common denominator, answer is $\frac{1}{12}(16 + 6\pi - 9\sqrt{3})$.				
	If hybrid use of x and θ in trig. Functions – contact	your Tea	am Lead	ler.	
	NMS is 0/6				
	Total		10		

Q6	Solution	Mark	Total	Comment		
	NO MISREADS ARE ALLOWED IN THIS QUESTION					
(a)	$\begin{bmatrix} 3\\1\\-1 \end{bmatrix} = \begin{bmatrix} 2\\-1\\3 \end{bmatrix} + \lambda \begin{bmatrix} -1\\-2\\p \end{bmatrix}$ (From x or y) $\lambda = -1$ (Using z) $-1 = 3 - p \rightarrow p = 4$	M1 A1	2	$\lambda = -1$ seen or used AG ; must see $p = 4$ justfied		
(b)	(1)(2) + (2)(2) + (4)(1) = 0					
	(-1)(2) + (-2)(-3) + (4)(-1) = 0 perpendicular / 90 ⁰ OE	B1	1	Correct scalar product = 0 and perpendicular or 90° OE seen.		
	Accept $-2 + 6 - 4 = 0$ for sufficient evidence of Accept inclusion of λ and μ in their scalar production	of correc	t scalar	product.		
(c)	$2 - \lambda = 2 + 2\mu$ -1 - 2\lambda = 1 - 3\mu 3 + 4\lambda = -3 - \mu	M1		Setting up at least two of these equations and attempt to solve for λ or μ .		
	Solving x and y gives $\lambda = -\frac{4}{7}$ $\mu = \frac{2}{7}$	A1		Either correct.		
	Checking in z gives $\frac{5}{7} \neq -\frac{23}{7}$ so l_1 and l_2 (or they) don't intersect / skew	E1	3	Correct use of correct λ and μ to show they don't satisfy the unused equation and a conclusion		
	Solving x and z gives $\lambda = -\frac{12}{7}$ $\mu = \frac{6}{7}$ and checking in y gives $\frac{17}{7} \neq -\frac{11}{7}$. Solving y and z gives $\lambda = -\frac{10}{7}$ $\mu = -\frac{2}{7}$ and checking in x gives $\frac{24}{7} \neq \frac{10}{7}$. For E1 they could correctly use correct value of λ or μ in third equation and show inconsistent value for μ or λ (or that the point of intersection is not consistent) and state a conclusion.					
(d)	$AC^2 = 5 \text{ or } AC = \sqrt{5}$	B1		Condone any wrong signs seen in \overrightarrow{AC} PI if seen correct on M1 line.		
	$(\overrightarrow{BC} =) \qquad \begin{bmatrix} 2+2\lambda\\-6-4\lambda \end{bmatrix}$	B1		Accept +/- this vector PI if seen correct on M1 line.		
	$\lambda^2 + (2+2\lambda)^2 + (-6-4\lambda)^2 = 5$	M1		Forming a quadratic equation in λ from $BC^2 = AC^2$ (ft on <i>BC</i> and <i>AC</i> .) No square root signs.		
	$21\lambda^2 + 56\lambda + 35 (=0)$	A1		OE. Withhold if a component error in \overrightarrow{BC}		
	$(\lambda+1)(3\lambda+5) (=0)$	dM1		OE. Attempt at factors for a three term quadratic PI by correct λ values		
	$\left(\frac{11}{3}, \frac{7}{3}, -\frac{11}{3}\right)$ uniquely identified as B	A1	6	Accept as a column vector Withhold if a component error in \overrightarrow{BC} .		
	For dM1 the factors must give their $3\lambda^2$ and $+5$	terms o	r the for	mula must be used correctly.		
	Total		12			

Q6	Solution	Mark	Total	Comment
(d)	Alternative solutions		A(3,1	$1,-1) \qquad M \qquad B(2-\lambda, -1-2\lambda, 3+4\lambda)$ $C(2, 1, -3)$
	<u>Use of scalar product</u>			
	$M(2 - \lambda, -1 - 2\lambda, 3 + 4\lambda) (B1)$)	CM =	$= \underline{m} - \underline{c} = \begin{bmatrix} -\lambda \\ -2 - 2\lambda \\ 6 + 4\lambda \end{bmatrix} $ (B1)
	$\overrightarrow{CM} \cdot \begin{bmatrix} -1\\ -2\\ 4 \end{bmatrix} = 0 (-\lambda)(-1) + (-2 - 2\lambda)(-2\lambda)(-2\lambda)(-2\lambda)(-2\lambda)(-2\lambda)(-2\lambda)(-2\lambda)(-$	2) + (6 +	· 4λ)(4))=0 (M1)
	$\lambda + 4 + 4\lambda + 24 + 16\lambda = 0$) (A1)	a correc	ect linear equation in λ $21\lambda + 28 = 0$
	$\rightarrow \lambda = -\frac{4}{3}$ (dM1) solving for $\lambda \rightarrow M\left(\frac{10}{3}, \frac{5}{3}, -\frac{10}{3}, \frac{5}{3}, -\frac{10}{3}\right)$	$-\frac{7}{3}$) so	B is $\left(\frac{11}{3}\right)$	$\left(\frac{1}{3}, \frac{7}{3}, -\frac{11}{3}\right)$ (A1) accept as column vector
	Use of Pythagoras			
	$AC^2 = 5$ (or $AC = \sqrt{5}$) (B1) M is $(2 - \lambda, -1 - 1)$	- 2λ,3 +	4λ) ΑΜ	$\vec{M} = \begin{bmatrix} -1 - \lambda \\ -2 - 2\lambda \\ 4 + 4\lambda \end{bmatrix}$ or $\vec{CM} = \begin{bmatrix} -\lambda \\ -2 - 2\lambda \\ 6 + 4\lambda \end{bmatrix}$ (B1)
	AM^{2} +	СМ	1 ²	$=$ AC^2
	$(-1-\lambda)^2 + (-2-2\lambda)^2 + (4+4\lambda)^2 + (-\lambda)^2$	$)^{2} + (-2)^{2}$	$(-2\lambda)^{2}$	+ $(6 + 4\lambda)^2 = (-1)^2 + 0^2 + (-2)^2$ (M1)
	$k(3\lambda^2 + 7\lambda + 4) = 0$ (A1) ($\lambda = -1$) or $\lambda = -\frac{4}{3}$ (dM1) $B\left(\frac{11}{3}, \frac{7}{3}, -\frac{11}{3}\right)$ (A1) Accept as column vector			
	Withhold the A marks if there are	e any ear	lier erro	For(s) e.g. $\overrightarrow{CM} = \begin{bmatrix} \lambda \\ -2 - 2\lambda \\ 6 + 4\lambda \end{bmatrix}$ etc.
	Could use the fact that M is the mid-point of AB	in either	of the ab	bove and express it as $M\left(\frac{5-\lambda}{2}, -\lambda, 1+2\lambda\right)$.
	Use of equal angles at A and B			
	$\overrightarrow{AB} = \begin{bmatrix} -1\\ -2\\ 4 \end{bmatrix}$ (direction of l_1) and $\overrightarrow{AC} = \begin{bmatrix} -1\\ 0\\ -2 \end{bmatrix}$	(B1)	$\overrightarrow{BC} =$	$= \begin{bmatrix} \lambda \\ 2+2\lambda \\ -6-4\lambda \end{bmatrix} $ (B1)
	$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{BA} \cdot \overrightarrow{BC} \rightarrow (-1)(-1) + (-2)(0)$	+(4)(-	(2) = (1)	1) $(\lambda) + (2)(2 + 2\lambda) + (-4)(-6 - 4\lambda)$ (M1
	$\rightarrow 1 + 0 - 8 = \lambda + 4 + 4\lambda + 24 + 10$	5λ (A1)	any co	orrect equation $(-7 = 21\lambda + 28)$
	$\rightarrow \lambda = -\frac{5}{3}$ (dM1) solving for λ	$B\left(\frac{11}{3},\frac{7}{3}\right)$	$\left(-\frac{11}{3}\right)$	(A1)
	Correct $\overrightarrow{BA}, \overrightarrow{CA}$ and/or \overrightarrow{CB} could score the B1 r	narks.		
	Allow $\pm \overrightarrow{AB} \cdot \overrightarrow{AC} = \pm \overrightarrow{BA} \cdot \overrightarrow{BC}$ for the M1 m	ark but r	nust be 4	4 vectors containing angles at A and B
	Use of equivalent direction vectors always pos	sible. If y	you com	ne across a solution that you think falls into
	one of these methods and you're not sure how	to mark	it, pleas	se contact your Team Leader.

Q7	Solution	Mark	Total	Comment
(a)	$\sin^3 y + 3e^{-2x}y + 2x^2 = 5$			
	$\frac{d}{dx}(\sin 3y) = 3\cos 3y \frac{dy}{dx}$	B1		
	$\frac{\mathrm{d}x}{\mathrm{d}x}(3\mathrm{e}^{-2x}y) = p\mathrm{e}^{-2x}y + q\mathrm{e}^{-2x}\frac{\mathrm{d}y}{\mathrm{d}x}$	M1		
	$= -6e^{-2x}y + 3e^{-2x}\frac{dy}{dx}$	A1		
	$\frac{\mathrm{d}}{\mathrm{d}x}(2x^2 = 5) \text{gives} +4x = 0$	B1		Both correct, looking for $+4x = 0$.
	$\frac{\mathrm{d}y}{\mathrm{d}x}(3\cos^3 y + 3\mathrm{e}^{-2x}) - 6\mathrm{e}^{-2x}y + 4x = 0$	M 1		Attempt to factor out $\frac{dy}{dx}$ from an
				expression involving exactly two $\frac{dy}{dx}$ terms.
	$\frac{dy}{dx} = \frac{6e^{-2x}y - 4x}{3\cos^2 3y + 3e^{-2x}}$	A1	6	Can be earned without scoring second B1 .
	Diff. w.r.to y marks as $3\cos^3 y$ (B1) + $(3e^{-2x} - $	6ye ^{-2x}	$\frac{dx}{dy}$) (N	I1 A1) + $4x \frac{dx}{dy} = 0$ (B1) then (M1 A1)
	Ignore spurious $\frac{dy}{dx} = \cdots$ for first four marks. Penal	ise with	M0 A0	unless recovered.
	Candidates who miss out $= 0$ will lose the second	B mark	but can	still earn the final \mathbf{A} mark if recovered.
(b)(i)	At $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ $6\mathrm{e}^{-2x}y - 4x = 0$	M 1		Putting the numerator of their $\frac{dy}{dx} = 0$ and attempting to solve for <i>y</i> .
	$y = \frac{2}{3}x e^{2x}$	A1	2	OE any exact value for $\frac{2}{3}$ including 0. $\dot{6}$
	To score the A1 mark in (b)(i) their $\frac{dy}{dx}$ in part (a) n	nust be	correct	but allow the marks in (b)(ii).
(b)(ii)	Using $y = \frac{2}{3}x e^{2x}$ in original equation gives			
	$\sin\left(3 \times \frac{2}{3}x e^{2x}\right) + 3e^{-2x} \times \frac{2}{3}x e^{2x} + 2x^2 = 5$	M1		Attempt to substitute their expression of the form $y = rx e^{2x}$ into original equation.
	$\sin(2x e^{2x}) + 2x + 2x^2 = 5$	A1		Correct but need not be simplified
	$f(x) = \sin(2x e^{2x}) + 2x + 2x^2 - 5 = 0$			Rearrange into the form $f(x) = 0$.
	(f(1)=0.80+2+2-5=) -0.198]	dM1		f(1) and f(1.2) correct to at least 1 SF.
	(f(1.2) = 0.96 + 2.4 + 2.88 - 5 =) 1.249			-(-)
	Sign change so $1 < x < 1.2$	A1	4	f(1) and $f(1.2)$ correct and sign change implies conclusion.
	Leaving as $sin(2x e^{2x}) + 2x + 2x^2 = 5$ and using	g x = 1	and $x =$	1.2 to get 4.8 and 6.2 for LHS (dM1)
	and $4.8 < 5$ and $6.2 > 5$ OE with conclusion score	es (A1).		-
	Total		12	

Q8	Solution	Mark	Total	Comment		
(a)	$A\left(\frac{1}{x} + \frac{1}{k-x}\right) = A\left(\frac{k-x+x}{x(k-x)}\right) \left(= A\left(\frac{k}{x(k-x)}\right)\right)$	M1		To compare with $\frac{1}{x(k-x)}$		
	Comparing gives $Ak = 1$ so $A = \frac{1}{k}$	A1	2	NMS $A = \frac{1}{k}$ scores 2/2		
	Alternative: $\frac{1}{x(k-x)} = \frac{A}{x} + \frac{A}{k-x} \rightarrow 1 = A(k)$	- x) +	Ax (N	$\mathbf{A1} \rightarrow 1 = Ak \rightarrow A = \frac{1}{k} (\mathbf{A1})$		
(b)	$\frac{1}{x(1200-x)} = \lambda \left(\frac{1}{x} + \frac{1}{1200-x}\right)$ $\lambda \int \frac{1}{x} + \frac{1}{1200-x} dx \qquad \left(=\frac{1}{2000} \int dt\right)$	M1		Separation of x terms into two fractions. Common multiple needn't be correct.		
	λ (lnx - ln(1200 - x))	A1 A1		Correct log integrations (LHS)		
	$= \frac{1}{3600} (+C)$ $\frac{1}{1200} (\ln 300 - \ln 900) = C \rightarrow C = \frac{1}{1200} \ln\left(\frac{1}{3}\right)$	dM1		Using $x = 300$ and $t = 0$ to find a value for <i>C</i>		
	$t = 3\ln\left(\frac{3x}{1200 - x}\right)$	A1	5	AG be convinced		
	AG!!! - must see some evidence of correct log manipulation before awarding the final A1					
	e.g. $\ln x - \ln(1200 - x) = \frac{t}{3} + \ln\left(\frac{1}{3}\right) \to \ln x - \frac{1}{3}$	ln(1200	(-x) =	$\frac{t}{3} + \ln\left(\frac{1}{3}\right) \to \ln\left(\frac{3x}{1200-x}\right) = \frac{t}{3}$ to answer		
	Alternative Method					
	$\frac{dx}{dt} = \frac{x(1200-x)}{3600} \to \frac{dt}{dx} = \frac{3600}{x(1200-x)} \to \frac{dt}{dx} = 3\left(\frac{1}{x} + \frac{1}{1200-x}\right) \text{ M1 (using (a))}$					
	$\rightarrow t = 3 \ln x$ A1 - 3 ln(1200 - x) A1 (+C) then as above for dM1 A1					
(c)(i)	Using $x = 600$ $t = 3\ln(\frac{1800}{1200-600})$ OE	M1		e.g. $t = 3\ln 3 \text{ or } 3.29$		
	14.20 or 2.20(p.m.)	A1	2	NMS: correct time scores 2/2		
(c)(ii)	$t = 3\ln\left(\frac{3x}{1200-x}\right) \rightarrow \frac{3x}{1200-x} = e^{\frac{t}{3}}$	M1		OE for RHS - e.g. $\sqrt[3]{e^t}$		
	$x = \frac{1200e^{\frac{t}{3}}}{3 + e^{\frac{t}{3}}}$	A1				
	(when $t = 4$) $x = 670$	B1	3	CAO ; not 670.094		
	OE could also include $e^{t} = \left(\frac{3x}{1200-x}\right)^{3}$ etc. It is possible to score M1 A0 B1 .		-			
	Total	12				