

General Certificate of Education (A-level) January 2012

Mathematics
MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4: January 2012-Mark scheme

Q	Solution	Marks	Total	Comments
1(a)	$2 x+3=A(2 x+1)+B(2 x-1)$	M1		
	$\begin{array}{ll} x=\frac{1}{2} & x=-\frac{1}{2} \\ A=2 & B=-1 \end{array}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	Use two values of x to find A and B Both
(b)	$\begin{array}{r} 4 x ^ { 2 } - 1 \longdiv { 1 2 x ^ { 3 } - 7 x - 6 } \\ 12 x^{3}-\underline{3 x} \\ -4 x-6 \end{array}$	M1		Complete division leading to values for C and D
	$\begin{aligned} & C=3 \\ & D=-2 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	in expression. SC B1 $C=3, D$ not found or wrong; $D=-2, C$ not found or wrong.
(c)	$\begin{aligned} & \int 3 x-2\left(\frac{2}{2 x-1}-\frac{1}{2 x+1}\right) \mathrm{d} x \\ & 3 \frac{x^{2}}{2} \end{aligned}$	M1 A1ft		Use parts (a) and (b) to obtain integrable form ft on C
	$-2\left(\ln (2 x-1)-\frac{1}{2} \ln (2 x+1)\right)$	A1ft		Both correct; ft on A, B and D Condone missing brackets
	$\frac{3}{2}(4-1)-2\left(\left(\ln 3-\frac{1}{2} \ln 5\right)-\left(\ln 1-\frac{1}{2} \ln 3\right)\right)$	m1		Correct substitution of limits
	$\frac{9}{2}-3 \ln 3+\ln 5=\frac{9}{2}+\ln \left(\frac{5}{27}\right)$	A1	5	$p=\frac{9}{2} \quad q=\frac{5}{27}$
		Total	11	

(a) Condone poor algebra for M1 if continues correctly.
(b) Complete division for M1; obtain a value for $C(C x)$ and a remainder $a x+b$
(c) Form $\int C x+\left(\frac{P}{2 x-1}+\frac{Q}{2 x+1}\right) \mathrm{d} x$ using candidate's P, Q, C for M1. Condone missing $\mathrm{d} x$. $\int C x \mathrm{~d} x=C \frac{x^{2}}{2}$ for A1ft \quad ISW extra terms eg $\frac{12}{4 x^{2}-1}$ for first three terms only; max 3/5
Candidate's C; must have a value.
$\int \frac{4 x+6}{4 x^{2}-1} \mathrm{~d} x=\int \frac{4 x}{4 x^{2}-1}+\frac{6}{4 x^{2}-1} \mathrm{~d} x$ is an integrable form, as $\int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)$ is in the formula book, but they must try to integrate to show they know this, or use partial fractions again with
$\frac{6}{4 x^{2}-1}=\frac{3}{2 x-1}-\frac{3}{2 x+1}$ for M1
Substitute limits into $C \frac{x^{2}}{2}+m \ln (2 x-1)+n \ln (2 x+1)$, or equivalent, for m 1 ; substitution must be completely correct.
Condone $\frac{9}{2}-\ln \left(\frac{27}{5}\right)$ for A1

(a)(ii) Special case B1 for $\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$
(b) M1 for substituting candidates values for $\tan \alpha$ and $\tan \beta$ into correct formula.

Completely correct or_completely_correct ft on $\tan \alpha, \tan \beta$.
Special case answer is $\frac{12+3 \sqrt{3}}{9-4 \sqrt{3}}$ or $\times \frac{a}{a}$ where a is integer or $\sqrt{3}$ for M1m1A0

Q	Solution	Marks	Total	Comments
$\begin{gathered} \mathbf{3} \\ \text { (a) } \end{gathered}$	$\begin{aligned} (1+6 x)^{\frac{2}{3}} & =1+\frac{2}{3} \times 6 x+k x^{2} \\ & =1+4 x-4 x^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Simplified coefficients required
(b)	$(8+6 x)^{\frac{2}{3}}=8^{\frac{2}{3}}\left(1+\frac{6}{8} x\right)^{\frac{2}{3}}$	B1		OE
	$\left(1+\frac{6}{8} x\right)^{\frac{2}{3}}=1+4\left(\frac{x}{8}\right)-4\left(\frac{x}{8}\right)^{2}$	M1		x replaced by $\frac{x}{8}$ in answer to (a)
	$(8+6 x)^{\frac{2}{3}}=4+2 x-\frac{1}{4} x^{2}$	A1	3	Condone missing brackets, allow one error. Simplified coefficients required.
(c)	$\left(100=10^{2} \quad 8+6 x=10 \quad x=\frac{1}{3}\right)$			
	$\begin{aligned} 4+2 \times \frac{1}{3}-\frac{1}{4} \times\left(\frac{1}{3}\right)^{2} & \\ & =\frac{167}{36} \end{aligned}$	M1 A1	2	Use $x=\frac{1}{3}$ in binomial expansion from part (b) $\sqrt[3]{100} \approx \frac{167}{36}$
		Total	7	
$\begin{gathered} \hline \mathbf{3} \\ \mathbf{(b)} \end{gathered}$	Alternative $(8+6 x)^{\frac{2}{3}}=8^{\frac{2}{3}}\left(1+\frac{6}{8} x\right)^{\frac{2}{3}}$			OE
	$\begin{aligned} & \left(1+\frac{6}{8} x\right)^{\frac{2}{3}}=1+\frac{2}{3}\left(\frac{6}{8} x\right)+\frac{2}{3}\left(\frac{2}{3}-1\right) \frac{1}{2}\left(\frac{6}{8} x\right)^{2} \\ & (8+6 x)^{\frac{2}{3}}=4+2 x-\frac{1}{4} x^{2} \end{aligned}$			Condone missing brackets, allow one error.
	Alternative $\begin{aligned} & 8^{\frac{2}{3}}+\frac{2}{3} \times 8^{-\frac{1}{3}} \times 6 x+\frac{2}{3}\left(\frac{2}{3}-1\right) \frac{1}{2} \times 8^{-\frac{4}{3}} \times(6 x)^{2} \\ & 4+2 x-\frac{1}{4} x^{2} \end{aligned}$			Use binomial formula; condone one error and missing brackets.
(a)(b)	Condone $1^{\frac{2}{3}}$ for 1 for M1			

Q	Solution	Marks	Total	Comments
4 (a)	$\begin{aligned} P & =500 \mathrm{e}^{\frac{1}{8^{\times 60}}} \\ & =904000 \end{aligned}$	M1 A1	2	Must use $t=60$ Nearest thousand required 904000 only
(b)(i)	$\begin{aligned} \left(\mathrm{e}^{\frac{1}{\frac{t}{t}_{t}^{t}}}\right)^{2} & =\frac{500000}{500} \\ t & =8 \ln \sqrt{1000} \\ t & =27.6 \text { (minutes) } \end{aligned}$	M1 M1	3	OE Take logs correctly leading to expression for t. Accept 27.631
(ii)	$500 \mathrm{e}^{\frac{1}{8} T}-500000 \mathrm{e}^{-\frac{1}{8} T}=45000$			
	$\times \frac{\mathrm{e}^{\frac{1}{8} T}}{500} \Rightarrow\left(\mathrm{e}^{\frac{1}{8} T}\right)^{2}-1000=90 \mathrm{e}^{\frac{1}{8} T}$	M1		Set up equation; condone one error, allow in t. Condone inequality.
	$\left(\mathrm{e}^{\frac{1}{8} T}\right)^{2}-90 \mathrm{e}^{\frac{1}{8} T}-1000=0$	A1		Multiply by $\frac{e^{\frac{\overline{8}^{T}}{5}}}{500}$ and rearrange to AG, be convinced.
	$\begin{aligned} & \mathrm{e}^{\frac{\overline{8}^{T}}{T}}=100 \quad\left(\mathrm{e}^{\frac{\overline{8}^{T}}{}}=-10\right. \text { rejected) } \\ & t=36.8 \quad \text { (minutes) } \end{aligned}$	M1		Solve quadratic equation (retaining positive root).
		A1	4	CAO
		Total	9	
$\begin{gathered} \mathbf{4} \\ (\mathbf{b})(\mathbf{i}) \end{gathered}$	Alternative $\mathrm{e}^{\frac{1}{8} t}=1000 \mathrm{e}^{-\frac{1}{8} t} \Rightarrow \mathrm{e}^{\frac{1}{4} t}=500000$	M1		
	$\begin{gathered} 500 \\ t=4 \ln 1000 \end{gathered}$	M1		Take logs correctly leading to expression for t.
	Alternative	A		
	$\mathrm{e}^{\frac{1}{8^{t}}}=1000 \mathrm{e}^{-\frac{1}{8} t} \Rightarrow \ln \left(\mathrm{e}^{\frac{1}{8^{t}}}\right)=\ln 1000+\ln \left(\mathrm{e}^{-\frac{1}{8} t}\right)$	M1		Take logs correctly.
	$t=27.6$ (minutes)	M1		
		A1	3	
(b)(ii) M1 for solve quadratic equation Let $x=e^{\frac{1}{8} t} \quad$ solve quadratic equation $x^{2}-90 x-1000=0$ by inspection, $x=100$ seen; factors $(x-100)(x+10)$ with 100 and 10 seen; complete square $x=45 \pm \sqrt{3025}$ all correct formula $x=\frac{90 \pm \sqrt{90^{2}+4000}}{2} \quad$ all correct				
Final answer ; must have $t=36.8$ for A1				
(b)(i) 27.6 as final answer NMS $3 / 3$				

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} x y^{2}+3 y & =\left(8 t^{2}-t\right)\left(\frac{3}{t}\right)^{2}+3\left(\frac{3}{t}\right) \\ & =72-\frac{9}{t}+\frac{9}{t}=72 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Substitute and expand $k=72$
(b)(i)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=16 t-1 \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{3}{t^{2}}$	B1B1		
	$\begin{aligned} t=\frac{1}{4} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{-\frac{3}{\left(\frac{1}{4}\right)^{2}}}{16 \times \frac{1}{4}-1} \\ & =-16 \end{aligned}$	M1 A1		Use chain rule $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-3}{16 t^{3}-t^{2}}\right)$ and calculate gradient using $t=\frac{1}{4}$
	$t=\frac{1}{4} \quad x=\frac{8}{16}-\frac{1}{4} \quad y=\frac{3}{\frac{1}{4}}$	M1		$\text { Calculate } x \text { and } y \text { using } t=\frac{1}{4}$
	$x=\frac{1}{4} \quad y=12$	A1		Both correct
	tangent $\quad y=-16 x+16$	A1	7	ACF CSO $y-12=-16\left(x-\frac{1}{4}\right)$ ISW
(ii)	$y=-16 \times \frac{3}{2}+16=-8$	M1		Substitute $x=\frac{3}{2}$ into
	$\frac{3}{2}(-8)^{2}+3 \times(-8)=96-24=72$	A1	2	candidate's tangent; calculate y $y=-8$ used to verify 72
		Total	11	
5(a)	Alternative $x=8\left(\frac{3}{y}\right)^{2}-\frac{3}{y}$	M1 A1	2	Eliminate t
	x			
(b)(i)	Alternative $\begin{aligned} & 2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} \\ &+3 \frac{\mathrm{~d} y}{\mathrm{~d} x} \end{aligned}=0$	M1A1 B1		Product rule attempted; two terms added, one with $\frac{d y}{d x}$
	$t=\frac{1}{4} \quad x=\frac{8}{16}-\frac{1}{4} \quad y=\frac{3}{\frac{1}{4}}$	M1		Calculate x and y using $t=\frac{1}{4}$
	$x=\frac{1}{4} \quad y=12$	A1		Both correct.
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-y^{2}}{2 x y+3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=-16$	m1		Calculate gradient from candidate's expression.
	tangent $y=-16 x+16$	A1	7	ACF CSO $y-12=-16\left(x-\frac{1}{4}\right) \quad$ ISW

Q	Solution	Marks	Total	Comments
6(a)	$16\left(\frac{3}{4}\right)^{3}+11\left(\frac{3}{4}\right)-15$	M1		Evaluate $\mathrm{f}\left(\frac{3}{4}\right)$; not long division.
	$=\frac{27}{4}+\frac{33}{4}-15=0 \Rightarrow \text { factor }$	A1	2	Processing and conclusion.
(b)	$27 \cos \theta\left(2 \cos ^{2} \theta-1\right)+$	B1		Use acf of $\cos 2 \theta$ formula
	$19 \sin \theta(2 \sin \theta \cos \theta)-15=0$	B1		Use acf of $\sin 2 \theta$ formula
	$\begin{aligned} 54 \cos ^{3} \theta-27 \cos \theta+38\left(1-\cos ^{2} \theta\right) & \cos \theta \\ - & 15=0 \end{aligned}$	M1		All in cosines.
	$\begin{aligned} & 16 \cos ^{3} \theta+11 \cos \theta-15=0 \\ & x=\cos \theta \Rightarrow 16 x^{3}+11 x-15=0 \end{aligned}$	A1	4	Simplification and substitute $x=\cos \theta$ to obtain AG CSO.
(c)	$16 x^{3}+11 x-15=(4 x-3)\left(4 x^{2}+3 x+5\right)$	M1A1		Factorise $\mathrm{f}(x)$
	$b^{2}-4 a c=3^{2}-4 \times 4 \times 5 \quad(=-71)$	m1		Find discriminant of quadratic factor; or seen in formula
	$b^{2}-4 a c<0, \text { no solution }\left(\text { to } 4 x^{2}+3 x+5=0\right)$			Conclusion; CSO
	$\Rightarrow \text { (only) solution is } \cos \theta=\frac{3}{4}$	A1	4	Condone $x=\frac{3}{4}$ is (only) solution
		Total	10	

(a) For A1; minimum processing seen; $16 \times \frac{27}{64}+11 \times \frac{3}{4}-15=0 \quad ; 15-15=0$ and no other working is A0 minimum conclusion $=0$ hence factor
(b) For M1 mark; $\cos 2 \theta$ (eventually) in form $a \cos ^{2} \theta+b ; 19 \sin \theta \sin 2 \theta$ in form $c \cos \theta \sin ^{2} \theta$ and use $\sin ^{2} \theta=1-\cos ^{2} \theta$ to obtain $c \cos \theta\left(1-\cos ^{2} \theta\right)$
(c) M1 $(4 x-3)\left(4 x^{2}+k x \pm 5\right) \quad$ A1 fully correct
m 1 candidate's values of a, b, c used in expression for $b^{2}-4 a c$
or complete square to obtain $\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}$
A1 $b^{2}-4 a c$ correct or $\left(x+\frac{3}{8}\right)^{2}=\frac{9}{64}-\frac{5}{4} \quad\left(=-\frac{71}{64}\right)$ and stated to be negative so no solution or solutions are not real (imaginary)
Accept imaginary solutions from calculator if stated to be imaginary.
Condone $\sqrt{-71}$ is negative, or similar, so no solution.
Conclusion $x=\frac{3}{4}$ is solution, or $\cos \theta=\frac{3}{4}$ is solution

Q	Solution	Marks	Total	Comments
7	$\begin{aligned} & \int \frac{\mathrm{d} y}{y^{2}}=\int x \sin 3 x \mathrm{~d} x \\ & \int \frac{\mathrm{~d} y}{y^{2}}=-\frac{1}{y} \end{aligned}$	B1 B1		Correct separation and notation; condone missing integral signs
	$\int x \sin 3 x \mathrm{~d} x=x\left(-\frac{1}{3} \cos 3 x\right)$	M1		Use parts $\begin{array}{ll}u=x & \frac{d v}{d x}=\sin 3 x \\ \frac{d u}{d x}=1 & v=k \cos 3 x\end{array}$
	$-\int-\frac{1}{3} \cos 3 x \mathrm{~d} x$	A1		with correct substitution into formula
	$=-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x$	A1		CAO
	$\begin{aligned} & -\frac{1}{y}=-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x+C \\ & -1=-\frac{1}{3} \times \frac{\pi}{6} \cos \left(\frac{\pi}{2}\right)+\frac{1}{9} \sin \left(\frac{\pi}{2}\right)+C \end{aligned}$	M1		Use $x=\frac{\pi}{6} \quad y=1 \quad$ to find C
	$C=-\frac{10}{9}$	A1		CAO
	$-\frac{1}{y}=-\frac{1}{9}(3 x \cos 3 x-\sin 3 x+10)$			
	9	m1		And invert to $-y=-\frac{9}{(\ldots . .)}$
	$3 x \cos 3 x-\sin 3 x+10$	A1	9	CSO, condone first B1 not given
		Total	9	

Second M1 finding C; substitute $x=\frac{\pi}{6} \quad y=1$ into $\mathrm{f}(y)=p x \cos 3 x+q \sin 3 x+C$ and evaluate using radians. Must calculate a value of C.
m 1 for reaching form $\pm \frac{k}{y}=\frac{1}{9}(P x \cos 3 x+Q \sin 3 x+R)$ where P and Q are ± 3 or $\pm \frac{1}{3}$ or ± 1 and inverting to $\pm \frac{y}{k}=\frac{9}{(P x \cos 3 x+Q \sin 3 x+R)}$

Q	Solution	Marks	Total	Comments
$\begin{gathered} \mathbf{8} \\ (\mathbf{a})(\mathbf{i}) \end{gathered}$	$\overrightarrow{A B}=\left[\begin{array}{r} 2 \\ 0 \\ -1 \end{array}\right]-\left[\begin{array}{r} 4 \\ -2 \\ 3 \end{array}\right]=\left[\begin{array}{r} -2 \\ 2 \\ -4 \end{array}\right]$	M1 A1	2	$\pm(\overrightarrow{O B}-\overrightarrow{O A}) \text { implied by two }$ correct components Allow as ($-2,2,-4$)
(ii)	$\left[\begin{array}{r} 1 \\ 5 \\ -2 \end{array}\right] \cdot \overrightarrow{A B}=-2+10+8=16$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$		ft on $\overrightarrow{A B}$
	$\cos \theta=\frac{16}{\sqrt{24} \sqrt{30}}$ $\theta=53^{\circ}$	M1 A1	4	Correct formula for $\cos \theta$ with consistent vectors and correct moduli, in form $\sqrt{a^{2}+b^{2}+c^{2}}$ CSO Accept 53.4°, 53.40°
(b)	$\begin{aligned} & \overrightarrow{A B} \bullet \overrightarrow{B C}=\left[\begin{array}{r} -2 \\ 2 \\ -4 \end{array}\right] \cdot\left(\left[\begin{array}{r} 4+p \\ -2+5 p \\ 3-2 p \end{array}\right]-\left[\begin{array}{r} 2 \\ 0 \\ -1 \end{array}\right]\right) \\ & \overrightarrow{B C}=\left[\begin{array}{r} 2+p \\ -2+5 p \\ 4-2 p \end{array}\right] \end{aligned}$	M1		SC B1 90° following $s p=0$ Set up scalar product. $\mu=p$ at C. Any letter for p. Clear attempt to find $\overrightarrow{B C}$ in terms of p.
	$\begin{aligned} & -4-2 p-4+10 p-16+8 p=0 \\ & 16 p=24 \quad p=\frac{3}{2} \end{aligned}$	m1 A1		Expand scalar product and solve for p; ($=0$ possibly implied)
	$\overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{B C}=\left[\begin{array}{r} 4 \\ -2 \\ 3 \end{array}\right]+\left[\begin{array}{c} \frac{7}{2} \\ \frac{11}{2} \\ 1 \end{array}\right] \quad\left(=\left[\begin{array}{c} \frac{15}{2} \\ \frac{7}{2} \\ 4 \end{array}\right]\right)$ D is at $\left(\frac{15}{2}, \frac{7}{2}, 4\right)$	m1 A1	6	Correct vector expression to find $\overrightarrow{O D}$ written in components CAO; condone column vector
		Total	12	
	Alternative for last 2 marks $\overrightarrow{O D}=\overrightarrow{O C}+\overrightarrow{B A}=\left[\begin{array}{r} 4 \\ -2 \\ 3 \end{array}\right]+\frac{3}{2}\left[\begin{array}{r} 1 \\ 5 \\ -2 \end{array}\right]+\left[\begin{array}{r} 2 \\ -2 \\ 4 \end{array}\right]$ D is at $\left(\frac{15}{2}, \frac{7}{2}, 4\right)$	m1 A1		

Part (b) NB $p=\frac{3}{2}$ can come from wrong working where candidate uses $\overrightarrow{O C}$ in place of $\overrightarrow{B C}$.
This is M0 and scores no further marks, (unless they happen to find and go on to use it correctly).

