AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature \qquad

A-level

MATHEMATICS

Unit Pure Core 4

Friday 16 June 2017
Afternoon
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 A curve is defined by the parametric equations

$$
x=(t-1)^{3} \quad, y=3 t-\frac{8}{t^{2}} \quad t \neq 0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Find the equation of the normal at the point on the curve where $t=2$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

$\substack{\text { aUESTION } \\ \text { REFRRENCE }}$	Answer space for question 1

QUESTION REFRRENE REF	Answer space for question 1

2 (a) Express $7 \cos x+3 \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, giving your value of α to the nearest 0.1°.
(b) Use your answer to part (a) to solve the equation $7 \cos 2 \theta+3 \sin 2 \theta=5$ in the interval $0^{\circ}<\theta<180^{\circ}$, giving your solutions to the nearest 0.1°.

	Answer space for question 2

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 2

3 (a) The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=6 x^{3}-11 x^{2}+2 x+8$.
(i) Use the Factor Theorem to show that $(3 x+2)$ is a factor of $\mathrm{f}(x)$.
(ii) Show that $\mathrm{f}(x)$ has no other linear factors.
(b) The polynomial $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=\mathrm{f}(x)-\left(6 x^{2}-2 x-4\right)$.

Given that $(3 x+2)$ is a factor of $g(x)$, express $g(x)$ as a product of three linear factors.
[2 marks]
(c) The function h is defined by $\mathrm{h}(x)=\frac{\mathrm{g}(x)}{6 x^{3}-5 x^{2}-6 x}$.

Show that $\mathrm{h}(x)$ can be simplified to the form $p+q x^{n}$ where p, q and n are integers.
[2 marks]

	Answer space for question 3

QuESTON RFFRRENCE	Answer space for question 3

4 (a) Find the binomial expansion of $(1-4 x)^{-\frac{1}{2}}$ up to and including the term in x^{2}.
(b) Find the binomial expansion of $(16+4 x)^{\frac{3}{4}}$ up to and including the term in x^{2}.
(c) Hence find the expansion of $\sqrt{\frac{(16+4 x)^{\frac{3}{2}}}{(1-4 x)}}$ in ascending powers of x up to and including the term in x^{2}.

QUESTION PART REFERENCE	Answer space for question 4

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 4

5 (a) By replacing 3θ by $(2 \theta+\theta)$ show that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.
(b) By using the result from part (a) and assuming that $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$, find the exact value of

$$
\int_{0}^{\frac{\pi}{6}}\left(2 \sin ^{3} \theta+3\right) \mathrm{d} \theta
$$

	Answer space for question 5

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 5

6 The line l_{1} has equation $\mathbf{r}=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]+\lambda\left[\begin{array}{r}-1 \\ -2 \\ p\end{array}\right]$ where p is an integer.
The line l_{2} has equation $\mathbf{r}=\left[\begin{array}{r}2 \\ 1 \\ -3\end{array}\right]+\mu\left[\begin{array}{r}2 \\ -3 \\ -1\end{array}\right]$.
The points A and C have coordinates $(3,1,-1)$ and $(2,1,-3)$ respectively.
(a) The point A lies on l_{1}. Show that $p=4$.
(b) Show that the lines l_{1} and l_{2} are perpendicular.
(c) Show that the lines l_{1} and l_{2} do not intersect.
(d) The point B lies on l_{1} such the triangle $A B C$ is isosceles with $A C=B C$. Find the coordinates of B.

$\substack{\text { aUESTION } \\ \text { REFRRENCE }}$	Answer space for question 6

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 6

QUESTRON REFRRENCE	Answer space for question $\mathbf{6}$

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 6

$7 \quad$ A curve C is defined by the equation

$$
\sin 3 y+3 \mathrm{e}^{-2 x} y+2 x^{2}=5
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) (i) Show that, at the points on C where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, y=r x \mathrm{e}^{2 x}$, where r is a rational number.
(ii) Hence show that there is a point on C in the interval $1<x<1.2$ where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.

QUESTION REFRRT REERNCE	Answer space for question 7

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 7

8 (a) It is given that $\frac{1}{x(k-x)}$ can be expressed as $A\left(\frac{1}{x}+\frac{1}{k-x}\right)$ where A and k are positive constants. Find A in terms of k.
(b) A rumour is spreading through a school of 1200 pupils. The rate at which the rumour is spreading can be modelled by the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{x(1200-x)}{3600}
$$

where x is the number of pupils who have heard the rumour t hours after 11.00 am .
By $11.00 \mathrm{am}, 300$ pupils have heard the rumour. Taking $t=0$ as 11.00 am , use integration to solve this differential equation to show that

$$
t=3 \ln \left(\frac{3 x}{1200-x}\right)
$$

(c) Use this model to:
(i) find the time of day by which half of the pupils will have heard the rumour, giving your answer to the nearest 5 minutes
(ii) find x in terms of t and hence find the number of pupils who will have heard the rumour by 3.00 pm .

$\substack{\text { QUESTTON } \\ \text { REFERTNCE } \\ \text { PAR }}$	Answer space for question 8

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 8

$\substack{\text { QUESTON } \\ \text { REFRT } \\ \text { RFERENEE }}$	Answer space for question 8

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

