

A-LEVEL Mathematics

Pure Core 3 – MPC3 Mark scheme

6360 June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
1a	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1		All 4 correct <i>x</i> values (and no extras used) PI by 4 correct <i>y</i> values
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		At least 3 correct <i>y</i> in exact form or decimal values, rounded or truncated to 3dp or better (in table or formula) (PI by correct answer)
	$\int = (1 \times) \sum y$	m1		Correct substitution into formula, with $h=1$ of 4, and only 4, correct y values (as above) either listed (with + signs) or totalled.
	= 2.541	A1	4	CAO, must be this exactly and no error seen
b	$\left(\frac{dy}{dx}\right) = -e^{2-x}\ln(3x-2) + e^{2-x}\frac{3}{3x-2}$	M1		$Ae^{2-x}\ln(3x-2) + e^{2-x}\frac{B}{3x-2}$
		A1		A = -1
	(When $x = 2$)	A1		<i>B</i> = 3
	$\left(\frac{dy}{dx}\right) = \frac{3}{4} - \ln 4$ or $\frac{3}{4} + \ln \frac{1}{4}$	A1	4	ISW
	Total		8	

Q2	Solution	Mark	Total	Comment			
а	y y						
		M1 A1		Correct shape, inverted V, roughly symmetrical, with vertex in the 2 nd quadrant In all 4 quadrants			
	(1.5, 0) and (-2.5, 0) (0, 3)	B1 B1	4	Shown on sketch or coordinates stated Shown on sketch or coordinates stated (diagram takes precedence)			
b	(x =)1x = 4 + (2x + 1)(x =) - 5	B1 M1		OE			
	(x =) - 5	A1	3				
с	-5 < x < 1	B2	2	Or for $x > -5$ AND $x < 1$			
d	Reflection in $y = k$ x-axis (or line $y = 0$) (followed by)	M1 A1		Translation $\begin{bmatrix} 0\\ p \end{bmatrix}$ (M1)			
	Translation $\begin{bmatrix} 0\\ p \end{bmatrix}$ p = 4	M1 A1	4	p = 4 (A1) (followed by) (PI) Reflection in $y = k$ (M1) k = 4 (A1)			
	1			oe (m)			
	Total 13						
 (a) For M1 must be attempt at straight lines. Condone correct values on axes for B1, B1 (b) NMS: x = -5 scores SC1 If squaring: x²-8x+16=4x²+4x+1 therefore 3x²+12x-15=0 scores M1, then A1, B1 as above 							
(c) $x > -5$, $x < 1$ scores SC1 $x > -5$ or $x < 1$ scores SC1 SC1 for $-5 \le x \le 1$ or $-5 \le x \le 1$ or $-5 \le x \le 1$							
(d) There are other correct possible transformations, but for full marks the order of the two transformations must produce the correct answer.							

Q3	Solution	Mark	Total	Comment	
ai	$f(x) = 6\ln x - 8x + x^2 + 3$			(or reverse)	
	f(5) = -2.3				
	f(6) = 1.75	M1			
	Change of sign(or different signs)	IVII		Both values correct to 1sf (rounded or truncated)	
	$\Rightarrow 5 < \alpha < 6$	A1	2	Must have both statement and interval	
	- 5 < 4 < 6	AI	2	in words or symbols AND $f(x)$ defined	
				OR comparing 2 sides:	
				$6\ln 5 = 9.7$ $8 \times 5 - 5^2 - 3 = 12$	
				$6\ln 6 = 11$ $8 \times 6 - 6^2 - 3 = 9$ (M1)	
				at 5, LHS < RHS;	
				at 6 LHS > RHS	
				$\Rightarrow 5 < \alpha < 6 \tag{A1}$	
ii	$x = 4 + \sqrt{13 - 6\ln x}$				
	$x - 4 = \sqrt{13 - 6 \ln x}$				
	$(x-4)^2 = 13 - 6 \ln x$	M1		Correctly eliminate square root	
	$x^2 - 8x + 16 = 13 - 6 \ln x$			Must see squared term correctly	
		A1		expanded	
	$6\ln x + x^2 - 8x + 3 = 0$	A1	3	AG, CSO	
	F 000				
iii	$x_2 = 5.828$	B1			
	$x_3 = 5.557$	B1	2		
bi	dy 6			6 x ⁵	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{x} + 2x - 8$	B1		Condone $\frac{6x^3}{r^6}$	
				X	
	$\left(\frac{dy}{dx}=0\right) 6+2x^2-8x=0$	M1			
	$\left(\frac{1}{dx} - 0\right) + 2x - 8x - 0$	M1		Equate to zero (PI) and eliminate their	
				fraction correctly.	
	x=1, x=3	A1			
	(x=1), y=-4	A1 A1		Oe for other exact correct values	
	$(x=3)$, $y=6\ln 3-12$ or $\ln 729-12$	AI	5		
				If M0 then SC1 for $(1, -4)$ and/or	
				$(3, 6\ln 3 - 12)$	
ii	x = 5, y = -8	M1		their $x + 4$ and $2 \times$ their y on either of	
				their 'pairs' their y on entire of their 'pairs'	
	$x = 7$, $y = 12 \ln 3 - 24$	A1	2	All correct : oe exact	
	Total		14		
	(a)(ii) Condone all terms in any order on one side but must have =0				
(a)(iii)	No credit for any answers not to this accurate	су			

Q4	Solution	Mark	Total	Comment	
а		M1		$f(x) \le 5, ** < 5$	
	f(x) < 5	A1	2		
bi	$x = 5 - e^{3y}$	M1		Swap x and y at any stage.	
	$e^{3y} = 5 - x$				
	$3y = \ln(5-x)$	M1		Correctly converting to ln.	
	$(f^{-1}(x) =) \frac{1}{3} \ln(5 - x)$	A1	3	ACF	
ii	(x =) 4	B1	1		
с	$[gg(x) =] \frac{1}{2(\frac{1}{2x-3}) - 3}$	M1			
	$=\frac{1}{\frac{2-6x+9}{2x-3}}$	A1		or $\frac{2x-3}{2-3(2x-3)}$	
	$=\frac{2x-3}{11-6x}$	A1	3		
	Total		9		
(b)(i) I	(b)(i) Must be convinced that final answer is not $\ln \frac{5-x}{3}$ or $\ln(5-x)/3$				

Q5	Solution	Mark	Total	Comment	
a		mark		$\pm \cos^2 x \pm \sin^2 x$	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$	M1		$\frac{1-\cos^2 x \pm \sin^2 x}{\cos^2 x}$	
	1 1 2				
	$=\frac{1}{\cos^2 x}$ or $1+\tan^2 x$			Must see this line	
	$=\sec^2 x$	A1	2	AG; no errors seen and all notation	
			2	correct	
b	$\int x \sec^2 x dx$				
	5				
	$u = x$ $\frac{\mathrm{d}v}{(\mathrm{d}x)} = \sec^2 x$				
	du 1 to the	M1		All 4 terms in this form with $\frac{du}{dx}$ correct	
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 1$ $v = \tan x$				
				and $\int \frac{\mathrm{d}v}{\mathrm{d}x}$ attempted	
	$v = \tan x$	B1			
	$x \tan x - \int \tan x (\mathrm{d}x)$	A1			
	$= x \tan x - \ln \sec x + c$	A1		OE (e.g. $x \tan x + \ln \cos x$);	
				must have constant of integration	
			4	must have constant of integration	
с	1				
	$(V =)\pi \int 25x \sec^2 x dx$	B1		Must include π , limits and dx	
	0				
	$=(25\pi)[(1\tan 1 - \ln \sec 1) - 0]$	M1		Must have $(k) \int x \sec^2 x$ then correct	
	$-(25\pi)[(1\tan 1 - \sin 5001) - 0]$			substitution of 0 and 1 into	
				$ax \tan x + b \ln(\sec or \cos)x$	
				Condone missing 0.	
	= 74	A1	3	Condone AWRT 74	
	Total		9		
	10141		7	1	
(a) U	(a) Use of product rule scores M0				
(c) ((c) $\left[(5\sqrt{x}) \sec x \right]^2$ must be correctly expanded for B1 to be available.				
Ľ					
If the	integration has been re-started. then M1 must	be for su	bstitutior	n into $ax \tan x + b \ln \sec x$	
	If the integration has been re-started, then M1 must be for substitution into $ax \tan x + b \ln \sec x$				

Q6	Solution	Mark	Total	Comment
a	y y	B1		Correct shape passing through origin
	<u>x</u>			
	$\left(\frac{1}{3},\frac{\pi}{2}\right)$	B1		Must be stated
	$ \begin{pmatrix} \frac{1}{3}, \frac{\pi}{2} \\ -\frac{1}{3}, -\frac{\pi}{2} \end{pmatrix} $	B1	3	Must be stated
b	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{3}\cos y$	M1		
	$\frac{dy}{dx} = \frac{3}{\cos y}$ or $3\sec y$	A1	2	Both $\frac{dx}{dy}$ and $\frac{dy}{dx}$ seen and used correctly
	Total		5	

(a) Coordinates must be stated NOT just indicated on axes, but BOTH correct end points clearly labelled on axes scores SC1.

Q7	Solution	Mark	Total	Comment	
		IVIAI N	iuai		
	$\frac{\mathrm{d}u}{\mathrm{d}x} = -2x$ or $\mathrm{d}u = -2x\mathrm{d}x$	M1		Condone $\frac{du}{dt} = 2x$ or $du = 2x dx$	
				dx	
	.6 y dy				
	$\int \frac{6-u}{u^{0.5}} \times \frac{du}{-2}$	A1		OE correct unsimplified integral in terms	
	<i>u</i> –2			of <i>u</i> only, with d <i>u</i> seen on this line or later	
	1			_	
	$=-\frac{1}{2}\int (6u^{-0.5}-u^{0.5})du$	m1		Terms in the form $\int (a u^{-0.5} + b u^{0.5}) du$	
	2.				
	1 05 2 15				
	$=-\frac{1}{2}(6\frac{u^{0.5}}{0.5}-\frac{2u^{1.5}}{3})$	A1F		Ft must be in the form $cu^{0.5} + du^{1.5}$	
	2 0.5 3			Oe (eg allow $c\sqrt{u}$)	
	$(=-6u^{0.5}+\frac{1}{3}u^{1.5})$				
	3				
	(Limits $[x]_{1}^{2} = [u]_{5}^{2}$)				
	2Γ $1 T^2$				
	$\int_{5}^{2} = \left[-6u^{0.5} + \frac{1}{3}u^{1.5} \right]_{5}^{2}$				
	$=(-6\times2^{0.5}+\frac{1}{3}\times2^{1.5})-(-6\times5^{0.5}+\frac{1}{3}\times5^{1.5})$	m1		Correct substitution into expression of	
	3 3 3			the form $eu^{0.5} + fu^{1.5}$	
				and $F(2) - F(5)$, or	
				if using x , F(2) – F(1)	
	$=\frac{13}{3}\sqrt{5}-\frac{16}{3}\sqrt{2}$	A1A1		oe any correct exact form	
	3 3 3	AIAI	7		
			,		
	Total		7		
	$(6-u)^{\frac{3}{2}} du$				
For first	st A1 allow: $\int \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$				
	For first A1 allow: $\int \frac{(6-u)^{\frac{3}{2}}}{\sqrt{u}(6-u)^{\frac{1}{2}}} \times \frac{du}{-2}$				
For sec	For second m1 the substitution must be in the correct order				

a $LHS = 4(1 + \cos^2 \theta) - \cot^2 \theta$ MI $4(1 + \cot^2 \theta) - \cot^2 \theta = k$ $Or 4 \csc^2 \theta - (\csc^2 - 1) = k$ $\cot^2 \theta = \frac{k - 4}{3}$ $\tan^2 \theta = \frac{3}{k - 4}$ $[\sec^2 \theta = \frac{3}{k - 4} + 1]$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ I $\sec^2 \theta = \frac{k - 1}{k - 4}$ I $\sec^2 \theta = \frac{k - 1}{k - 4}$ I $Sec^2 \theta = \frac{k - 1}{k - 4}$ I I $Sec^2 \theta = \frac{k - 1}{k - 4}$ I I I $Sec^2 \theta = \frac{k - 1}{k - 4}$ I	
$4(1 + \cot^2 \theta) - \cot^2 \theta = k$ Or $4 \csc^2 \theta - (\csc^2 - 1) = k$ $\cot^2 \theta = \frac{k - 4}{3}$ $\tan^2 \theta = \frac{3}{k - 4}$ $[\sec^2 \theta = \frac{3}{k - 4} + 1]$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ 41 $\sec^2 \theta = \frac{k - 1}{k - 4}$ 41 $\sec^2 \theta = \frac{k - 1}{k - 4}$ 41 5 $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $\sec^2 \theta = \frac{k - 1}{k - 4}$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$	n
$4(1 + \cot^{2} \theta) - \cot^{2} \theta = k$ Or $4 \csc^{2} \theta - (\csc e^{2} - 1) = k$ $\cot^{2} \theta = \frac{k - 4}{3}$ $\tan^{2} \theta = \frac{3}{k - 4}$ $[\sec^{2} \theta = \frac{3}{k - 4} + 1]$ $\sec^{2} \theta = \frac{k - 1}{k - 4}$ $\sin^{2} \theta = \frac{3}{k - 4}$ $\sec^{2} \theta = \frac{k - 1}{k - 4}$ $\operatorname{A1}$ $\operatorname{B1}$ $B1$	
b $\operatorname{sec}^{2} \theta = \frac{k-4}{3}$ $\operatorname{rec}^{2} \theta = \frac{k-4}{3}$ $\operatorname{rec}^{2} \theta = \frac{k-4}{3}$ $\operatorname{rec}^{2} \theta = \frac{3}{k-4}$ $\operatorname{rec}^{2} \theta = \frac{3}{k-4} + 1]$ $\operatorname{sec}^{2} \theta = \frac{k-1}{k-4}$ $\operatorname{rec}^{2} \theta = $.0
b $ \begin{cases} \operatorname{Or} 4 \operatorname{cosec}^2 \theta - (\operatorname{cosec}^2 - 1) = k \\ \operatorname{cot}^2 \theta = \frac{k - 4}{3} \\ \operatorname{Im} 1 \\ \operatorname{Im} 2 \theta = \frac{3}{k - 4} \\ \operatorname{Im} 1 \\ \operatorname{Isec}^2 \theta = \frac{3}{k - 4} \\ \operatorname{Isec}^2 \theta = \frac{3}{k - 4} + 1 \\ \operatorname{sec}^2 \theta = \frac{k - 1}{k - 4} \\ \operatorname{Im} 1 \\ \operatorname{Isec}^2 \theta = \frac{k - 1}{k - 4} \\ \operatorname{Im} 1 \\ \operatorname{Im} 2 \\ \operatorname{Im} 2$	
b $\tan^2 \theta = \frac{3}{k-4}$ $[\sec^2 \theta = \frac{3}{k-4} + 1]$ $\sec^2 \theta = \frac{k-1}{k-4}$ b $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ b $\sec^2 \theta = 4 \text{ or } \tan^2 \theta = 3$ $\operatorname{or } \cot^2 \theta = \frac{1}{3} \text{ or } \cos^2 \theta = \frac{4}{3}$ $\sec \theta = \pm 2$ M1 b $\operatorname{sec}^2 \theta = \frac{1}{3} \text{ or } \sin \theta = \pm \frac{N}{3}$ $\operatorname{or } \tan \theta = \pm \sqrt{3} \text{ or } \sin \theta = \pm \frac{N}{3}$	
b $\tan^2 \theta = \frac{3}{k-4}$ $[\sec^2 \theta = \frac{3}{k-4} + 1]$ $\sec^2 \theta = \frac{k-1}{k-4}$ b $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\tan^2 \theta = \frac{3}{k-4} + 1]$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\tan^2 \theta = \frac{3}{k-4} + 1]$ $\tan^2 \theta = \frac{3}{k-4} + $	
b $\tan^2 \theta = \frac{3}{k-4}$ $[\sec^2 \theta = \frac{3}{k-4} + 1]$ $\sec^2 \theta = \frac{k-1}{k-4}$ b $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\tan^2 \theta = \frac{3}{k-4} + 1]$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\tan^2 \theta = \frac{3}{k-4} + 1]$ $\tan^2 \theta = \frac{3}{k-4} + $	- must
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} \sec^2 \theta = \frac{3}{k-4} + 1 \end{bmatrix}$ $\begin{bmatrix} \sec^2 \theta = \frac{3}{k-4} + 1 \end{bmatrix}$ $\sec^2 \theta = \frac{k-1}{k-4}$ $\begin{bmatrix} A1 \\ 5 \end{bmatrix}$ $B1 \\ Cr \ \cos^2 \theta = \frac{1}{3} \ or \ \cos^2 \theta = \frac{4}{3} \\ \sec \theta = \pm 2 \end{bmatrix}$ $B1 \\ Cr \ \cos \theta = \pm 0.5 \\ Cr \ \tan \theta = \pm \sqrt{3} \ or \ \sin \theta = \pm \frac{\sqrt{3}}{3} \end{bmatrix}$	
$\begin{bmatrix} \sec^2 \theta = \frac{3}{k-4} + 1 \end{bmatrix}$ $\begin{bmatrix} \sec^2 \theta = \frac{3}{k-4} + 1 \end{bmatrix}$ $\begin{bmatrix} \sec^2 \theta = \frac{k-1}{k-4} \end{bmatrix}$ $\begin{bmatrix} A1 \\ B1 \\ ext{ or } \cot^2 \theta = \frac{1}{3} & \text{or } \cos^2 \theta = \frac{4}{3} \\ ext{ sec } \theta = \pm 2 \end{bmatrix}$ $\begin{bmatrix} B1 \\ ext{ or } \cos \theta = \pm 0.5 \\ ext{ or } \sin \theta = \pm \sqrt{3} & \text{or } \sin \theta = \pm \sqrt{3} \end{bmatrix}$	C
$\begin{bmatrix} \sec^2 \theta = \frac{3}{k-4} + 1 \end{bmatrix}$ $\begin{bmatrix} \sec^2 \theta = \frac{3}{k-4} + 1 \end{bmatrix}$ $\begin{bmatrix} \sec^2 \theta = \frac{k-1}{k-4} \end{bmatrix}$ $\begin{bmatrix} A1 \\ B1 \\ ext{ or } \cot^2 \theta = \frac{1}{3} & \text{or } \cos^2 \theta = \frac{4}{3} \\ ext{ sec } \theta = \pm 2 \end{bmatrix}$ $\begin{bmatrix} B1 \\ ext{ or } \cos \theta = \pm 0.5 \\ ext{ or } \sin \theta = \pm \sqrt{3} & \text{or } \sin \theta = \pm \sqrt{3} \end{bmatrix}$	Irom
b $sec^{2} \theta = \frac{k-1}{k-4}$ A1 5 AG: no errors seen 5 AG: no errors seen 5 PI by expression for eg sec $x = 2$ or $\cot^{2} \theta = \frac{1}{3}$ or $\cos \sec^{2} \theta = \frac{4}{3}$ $sec \theta = \pm 2$ B1 M1 or $\cos \theta = \pm 0.5$ or $\tan \theta = \pm \sqrt{3}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	
b $sec^{2} \theta = \frac{k-1}{k-4}$ A1 5 AG: no errors seen 5 AG: no errors seen 5 PI by expression for eg sec $x = 2$ or $\cot^{2} \theta = \frac{1}{3}$ or $\cos \sec^{2} \theta = \frac{4}{3}$ $sec \theta = \pm 2$ B1 M1 or $\cos \theta = \pm 0.5$ or $\tan \theta = \pm \sqrt{3}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	ing,
b $sec^{2}\theta = 4 \text{ or } tan^{2}\theta = 3$ or $cot^{2}\theta = \frac{1}{3}$ or $cosec^{2}\theta = \frac{4}{3}$ $sec\theta = \pm 2$ B1 B1 B1 B1 B1 B1 B1 B1	
b $sec^{2} \theta = 4 \text{ or } tan^{2} \theta = 3$ or $cot^{2} \theta = \frac{1}{3}$ or $cosec^{2} \theta = \frac{4}{3}$ $sec \theta = \pm 2$ B1 B1 B1 B1 B1 B1 B1 B1	
b $sec^{2} \theta = 4 \text{ or } tan^{2} \theta = 3$ or $cot^{2} \theta = \frac{1}{3}$ or $cosec^{2} \theta = \frac{4}{3}$ $sec \theta = \pm 2$ B1 $PI \text{ by expression for eg sec } x = 2$ or $cos\theta = \pm 0.5$ or $tan \theta = \pm \sqrt{3}$ or $sin \theta = \pm \frac{\sqrt{3}}{2}$	
or $\cot^2 \theta = \frac{1}{3}$ or $\csc^2 \theta = \frac{4}{3}$ $\sec \theta = \pm 2$ M1 or $\tan \theta = \pm \sqrt{3}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	
or $\cot^2 \theta = \frac{1}{3}$ or $\csc^2 \theta = \frac{4}{3}$ $\sec \theta = \pm 2$ M1 or $\tan \theta = \pm \sqrt{3}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	
or $\cot^2 \theta = \frac{1}{3}$ or $\csc^2 \theta = \frac{4}{3}$ $\sec \theta = \pm 2$ M1 or $\cos \theta = \pm 0.5$ or $\tan \theta = \pm \sqrt{3}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	
sec $\theta = \pm 2$ M1 or $\cos \theta = \pm 0.5$ or $\tan \theta = \pm \sqrt{3}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	
or $\tan \theta = \pm \sqrt{3}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	
	_
	3
$(\theta =)$ 60, 120, 240, 300, 420 A1 Sight of any four of these answer	¢
	3
$x = 22.5^{\circ}, 82.5^{\circ}, 112.5^{\circ}, 172.5^{\circ}$ B1 3 correct	
B1 5 All correct and no extras in inter	'al
(ignore answers outside interval)	
Total 10	

(a) The two m1 marks can be earned in either order. There are many different approaches

(b) If working in radians then max mark is **B1**, **M1**

(a)	Different approaches:		
(a)	Different approaches:		
	\mathbf{I} $LHS = 4(1 + \cot^2 \theta) - \cot^2 \theta$	M1	Use of a correct trig identity (or identities if using sin/cos) to get an
			expression/equation in a single trig function
	$4(1+\cot^2\theta)-\cot^2\theta=k$	A1	All correct, including $= k$
	$k-1=3+3\cot^2\theta$		
	$k-4 = 3\cot^2\theta$	m1	Both correct equations from their equation in <i>k</i> .
	$\frac{k-1}{k-4} = \frac{3+3\cot^2\theta}{3\cot^2\theta}$	m1	Correct equation from their 2 previous equations
	$\sec^2 \theta = \frac{k-1}{k-4}$	A1	AG: no errors seen
	II		
	$LHS = \frac{4}{\sin^2 \theta} - \frac{\cos^2 \theta}{\sin^2 \theta}$		
	$=\frac{4-\cos^2\theta}{1-\cos^2\theta}$	M1	Use of a correct trig identity (or identities if using sin/cos) to get an expression/equation in a single trig function
	$\frac{4 - \cos^2 \theta}{1 - \cos^2 \theta} = k$	A1	All correct, including = k
	$\frac{4\sec^2\theta - 1}{\sec^2\theta - 1} = k$	m1	Correct 'inversion' (at some stage) from their equation
	$4\sec^2\theta - 1 = k\sec^2\theta - k$		Must see at least one line of working, be convinced for final A1
	$k-1 = \sec^2 \theta(k-4)$	m1	Correct equation in the form
			$a \sec^2 \theta = b$ or $a \cos^2 \theta = b$ from their CORRECT equation
	$\sec^2 \theta = \frac{k-1}{k-4}$	A1	AG: no errors seen