AS

Mathematics

MPC2-Pure Core 2
Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations	
M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark orft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
2(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3+\frac{3}{2} x^{\frac{1}{2}}$	B2,1	2	ACF. If not B2, award B1 for correct differentiation of either $x^{3 / 2}$ or $3 x-7$
(b)(i)	$(k=) 13$	B1	1	13
(ii)	$\text { At } P(4, k) \frac{\mathrm{d} y}{\mathrm{~d} x}=3+\frac{3}{2}(4)^{0.5} \quad(=6)$	M1		Attempt to find c's $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=4$. M0 if c's answer (a) is a constant
	$\text { Gradient of normal }=-\frac{1}{6}$	dM1		$m \times m^{\prime}=-1$ used
	Eqn of normal $y-13=-\frac{1}{6}(x-4)$	A1F	3	ACF only ft on c's non-zero value of k ie check c's equation is equivalent to $6 y+x=4+6 k$, for c 's non-zero value of k
(iii)	When $y=0,0-13=-\frac{1}{6}(x-4)$	M1		Attempts to find x when $y=0$ in c's linear equation answer to (b)(ii)
	$x=82$	A1	2	82 82 with or without working scores $2 / 2$
	Total		8	
(b)(i)	Condone ' $y=13$ ' unless there is any contradi	tion to	3 being	e final value

Q	Solution	Mark	Total	Comment
4(a)(i)	($d=$) 9	B1	1	9
(ii)	$\left(u_{100}=\right) 23+(100-1) d$	M1		$23+(100-1) d \mathrm{OE}$; ft on c 's answer for part (a)(i) if d is numerical
	$\left(u_{100}=\right) 914$	A1	2	
(iii)		B1		NMS 914 scores $2 / 2$ $N=201$ stated or use
	$\left(\sum_{n=100}^{300} u_{n}\right)=\frac{201}{2}[914+2714]$	M1		Either $\frac{201}{2}\left[u_{100}+2714\right]$ or
				$\frac{201}{2}\left[2 u_{100}+(201-1) d\right]$ used with c's values for d and u_{100} from parts (a)(i) and (a)(ii) .
	$\sum_{n=100}^{300} u_{n}=364614$	A1	3	364614 NMS 364614 scores $3 / 3$ SC If 0/3 scored then award 1 mark if 363700 is the c's final answer
(a)(iii) ALTn	$\sum_{n=100}^{300} u_{n}=\sum_{n=1}^{300} u_{n}-\sum_{n=1}^{99} u_{n}$	(B1)		$\sum_{n=1}^{300}\left(u_{n}\right)-\sum_{n=1}^{99}\left(u_{n}\right) \text { OE eg } S_{300}-S_{99}$
	$\begin{gathered} =\frac{300}{2}[23+2714]-\frac{99}{2}\left[23+u_{100}-d\right] \\ (=410550-45936) \end{gathered}$	(M1)		OE Ft c's values for d and u_{100} from parts (a)(i) and (a)(ii)
	$\sum_{n=100}^{300} u_{n}=364614$	(A1)	(3)	364614 SC If $0 / 3$ scored then award 1 mark if 363700 is the c's final answer
(b)(i)	$24+24 r^{3}(=-57)$	M1		$a+a r^{3}$ seen or used with $a=24$. PI by ($\mathrm{r}=$) -1.5 oe
	$r=-\frac{3}{2}$	A1	2	Correct value for common ratio.
(ii)	No, (the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1	E1ft	1	OE statement with no contradiction Conclusion and reason, ft only on c 's value of r being <-1. Do NOT apply ISW
	Total		9	
(a)(iii)	Accept eg notation $\sum_{n=1}^{300}-\sum_{n=1}^{99}$ for (B1)			
(b)(ii)	OE for the (M1) in Altn: $\frac{300}{2}[2(23)+29$ Any value of $r \geq-1$ in (b)(i) scores E0 in For any value of $r<-1$ in (b)(i), 'No, as $r<$ are examples where E1ft is scored.	$\begin{aligned} & d]-\frac{99}{2} \\ & \text { p)(ii). } \\ & <-1 ’ ; ~ \end{aligned}$	$2(23)+$	$98 d]$ $-1^{\prime} ; ‘ \text { 'No, as }\|r\|>1^{\prime} ; \text { 'No, as }\|r\| \geq 1^{\prime} ;$

Q	Solution	Mark	Total	Comment
5(a)	$a=54 ; \quad b=36 ; \quad c=8$	$\begin{array}{\|c} \hline \text { B1,B1, } \\ \text { B1 } \end{array}$	3	B1 for each correct value. Accept correct embedded values for a, b and c within the expansion linked to correct power of x
(b)	($n=$) - 4	B1	1	-4. Condone x^{-4}.
(c)(i)	$\left(\right.$ Integrand $=$) $x^{-4}\left(27+a x^{2}+b x^{4}+c x^{6}\right)$	M1		Uses c's (a) and c's (b) in a product; or cancelling to get at least 3 correct ft terms $\frac{27}{x^{4}}+\frac{a}{x^{2}}+b+c x^{2}\left(\right.$ allow $b x^{0}$ for $\left.b\right)$
	$\int\left(27 x^{-4}+a x^{-2}+b+c x^{2}\right)(\mathrm{d} x)$	A1F		Integrand $27 x^{-4}+a x^{-2}+b+c x^{2}$, only ft on c's non-zero numerical answers from (a). PI by next line in soln.
	$=\frac{27 x^{-3}}{-3}+\frac{a x^{-1}}{-1}+b x+\frac{c x^{3}}{3}(+k)$	dM1		Correct integration of at least 3 terms, ft only on c's non-zero values from (a), accept unsimplified
	$=-9 x^{-3}-54 x^{-1}+36 x+\frac{8 x^{3}}{3}(+k)$	A1	4	Correct with coefficients and signs simplified; condone absence of $+k$
(c)(ii)	$\begin{aligned} & \left\{-9(3)^{-3}-54(3)^{-1}+36(3)+\frac{8(3)^{3}}{3}\right\}- \\ & \left\{-9-54+36+\frac{8}{3}\right\} \end{aligned}$	M1		Clear evidence of $\mathrm{F}(3)-\mathrm{F}(1)$ attempted where integration must have been attempted to get F ; If cand uses $\mathrm{F}(x)=$ the given integrand, then M0
	$\begin{aligned} & =\left[-\frac{1}{3}-18+108+72\right]-\left(-24 \frac{1}{3}\right) \\ & =186 \end{aligned}$	A1	2	CAO 186 NMS scores 0/2
	Total		10	
(c)(i)	The final A1 mark can be awarded if the simplified version occurs in (c)(ii) before the values are inserted			
(c)(ii)	For guidance $\frac{485}{3}-\left(-\frac{73}{3}\right)=\frac{558}{3}=186$ After incorrect integration we must see at least some substitution of 3 and 1 rather than just the difference of two incorrect values for M1 to be awarded			
(c)(ii)				

Q	Solution	Mark	Total	Comment
6	$\begin{aligned} 100 & =121 p+q \\ 16 & =16 p+q \\ 100 & =121 p+16-16 p \quad(84=105 p) \end{aligned}$ $\begin{aligned} & p=\frac{84}{105}\left(=\frac{4}{5}=0.8\right) \\ & q=\frac{336}{105}\left(=\frac{16}{5}=3.2\right) \\ & u_{4}=0.8 \times 100+3.2=83.2 \quad\left(=\frac{416}{5}\right) \end{aligned}$	M1 M1 dM1 A1 A1F	5	OE seen or used OE seen or used Valid method to solve the correct two simultaneous equations to reach a correct equation in either p only or q only eg $\begin{aligned} & 100=121\left(1-\frac{q}{16}\right)+q \text { OE, } 21=\frac{105}{16} q, \\ & 16(121-100)=(121-16) q \end{aligned}$ PI by correct values for both p and q A correct value for both p and q. ACF FT provided either c's p or c's q is correct ie ft on either $80+q$ or $100 p+3.2$ Accept correct ft value in any form
	Total		5	

Q	Solution	Mark	Total	Comment
9(a)(i)	Stretch (I) in x (-direction) OE (II) (scale factor) 0.5 OE (III)	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	Need (I) and either (II) or (III) Need (I) and (II) and (III) More than one transformation scores $0 / 2$
(a)(ii)	Translation $\left[\begin{array}{c}-3 \\ 0\end{array}\right]$	E2,1	2	E2: 'translat...' and $\left[\begin{array}{c}-3 \\ 0\end{array}\right]$. If not $\mathbf{E} 2$ award $\mathbf{E 1}$ for either 'translat...' or for $\left[\begin{array}{c}-3 \\ 0\end{array}\right]$. More than one transformation scores $0 / 2$
(b)(i)	$2^{x+3}=2^{3} 2^{x}=8 u$	B1	1	$8 u$ Accept $2^{3} u$ if in later work it is simplified to $8 u$
(ii)	$u^{2}-8 u+15=0$	M1		Eliminating y with $2^{2 x}=u^{2}$ or $\left(2^{x}\right)^{2}$ to form a quadratic eqn in u or in 2^{x} (terms in any order)
	$y=\left(\frac{y+15}{2^{3}}\right)^{2} \quad\left(y^{2}-34 y+225=0\right)$			OR eliminating x with $2^{2 x}=y=\left(\frac{y+15}{2^{3}}\right)^{2}$ condoning one sign or one numerical error
	$u=3, u=5 ; y=9, y=25$	A2,1		Correct values for u (or 2^{x}) and correct values for y. If not A2 award A1 for any two correct values. If y-values not simplified look for later evidence; eg p as ' 16 ' in the final answer is sufficient evidence.
	$\begin{aligned} & u=3 \Rightarrow x=\log _{2} 3 ; \\ & u=5 \Rightarrow x=\log _{2} 5 \end{aligned}$	M1		From a quadratic eqn, use of $2^{x}=k \Rightarrow x=\log _{2} k \mathrm{OE}$, for $k>0$ M0 if c's quadratic eqn would give nonreal roots or no positive root when solved correctly
	Gradient of $A B=\frac{25-9}{\log _{2} 5-\log _{2} 3}$	dM1		Dep on both previous M1. $\frac{y_{A}-y_{B}}{x_{A}-x_{B}}$ used with c's x and y values
	$=\frac{16}{\log _{2}\left(\frac{5}{3}\right)}$	A1	6	OE in the requested form eg $\frac{-16}{\log _{2}(0.6)}$
	Total		11	
(b)(ii)	OE for the $2^{\text {nd }}$ M1: eg $2^{x}=3 \Rightarrow x=\frac{\log 3}{\log 2}$			

