AS

Mathematics

MPC1 - Pure Core 1
Mark scheme

6360
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q1 \& Solution \& Mark \& Total \& Comment

\hline (a)
(b)
(c) \& $$
\left.\begin{array}{l}
\begin{array}{l}
y= \pm \frac{5}{3} x+\ldots \\
m=-\frac{5}{3}
\end{array} \\
\left.\begin{array}{l}
5 x+3 y+3=0 \quad \& \quad 3 x-2 y+17=0 \\
\text { eg } 10 x+6+9 x+51=0
\end{array}\right\} \\
\quad x=-3 \text { or } \quad x=-\frac{57}{19} \\
\text { or } \quad y=4 \quad \text { or } \quad y=\frac{76}{19}
\end{array}\right\} \text { or }(-3,4)
$$ \& M1

A1
A1

M1
A1
A1
A1
A1

M1 \& \& | $y=-\frac{5}{3} x-1$ for guidance |
| :--- |
| $\underline{\text { must see } m=\ldots \text { or statement such as " } A B}$ has gradient $-\frac{5}{3}$ so line parallel to $A B$ also has gradient $-\frac{5}{3}$." |
| correct equations used and correct elimination of x or y eg $19 x+57=0$ or $19 y-76=0$ etc |
| either x or y correct in any equivalent form |
| both coordinates written as integers |
| correct substitution into correct equation \& correct expansion of brackets |

\hline \& Total \& \& 7 \&

\hline (a) \& \multicolumn{4}{|l|}{| Do not penalise incorrect rearrangement if $m=-\frac{5}{3}$ is stated. |
| :--- |
| Example $y=-\frac{5}{3} x-3$ so $m=-\frac{5}{3}$ scores M1 A1 NMS $m=-\frac{5}{3}$ earns 2 marks. NMS $-\frac{5}{3}$ earns M1 A0 \quad NMS $(m=) \frac{5}{3}$ earns M1 A0 . NMS Award M1 A0 only for " $m=-\frac{5}{3} x$ ". |
| $5\left(\frac{2 y}{3}-\frac{17}{3}\right)+3 y+3=0$ earns M1, however $5\left(\frac{2 y}{3}+\frac{17}{3}\right)+3 y+3=0$, for example, scores M0. Other examples scoring M1 are $3 x-2\left(-\frac{5}{3} x-1\right)+17=0 \quad ;-\frac{5}{3} x-1=\frac{3}{2} x+\frac{17}{2}$ |
| Accept any correct equivalent fraction for first A1 but must have both $x=-3$ and $y=4$ for final A1. |
| NMS ($-3,4$) scores 3 marks |}

\hline
\end{tabular}

Q2	Solution	Mark	Total	Comment
(a) (b)	$\begin{aligned} & 45 \\ & \frac{* *+\sqrt{5}}{7+3 \sqrt{5}} \times \frac{7-3 \sqrt{5}}{7-3 \sqrt{5}} \\ & \text { (Numerator }=\text {) } 315+7 \sqrt{5}-135 \sqrt{5}-15 \\ & \text { (Denominator }=49+21 \sqrt{5}-21 \sqrt{5}-45) \\ & \begin{array}{r} \text { Value }=\frac{300-128 \sqrt{5}}{4} \\ =75-32 \sqrt{5} \end{array} \end{aligned}$	B1 M1 A1 B1 A1cso	4	at least this far must be seen as denominator
	Total		5	
(b)	NO MISREADS ALLOWED IN THIS QUESTION Condone multiplication by $7-3 \sqrt{5}$ instead of $\times \frac{7-3 \sqrt{5}}{7-3 \sqrt{5}}$ for M1 only if subsequent working shows multiplication by both numerator and denominator - otherwise M0 For first A1 $45 \times 7,45 \times 3$ and 3×5 must be evaluated correctly An error in the denominator such as $49+7 \sqrt{5}-7 \sqrt{5}-45=4$ should be given $\mathbf{B 0}$ and it would then automatically lose the final A1cso May use alternative conjugate $\times \frac{3 \sqrt{5}-7}{3 \sqrt{5}-7} \mathbf{M 1}$; numerator $=-315-7 \sqrt{5}+135 \sqrt{5}+15$ A1 etc			

Q3	Solution	Mark	Total	Comment
(a)(i)	$\begin{aligned} & \left(x-\frac{7}{2}\right)^{2} \cdots \\ & \text { (Minimum value }=\text {) }-10.25 \mathrm{OE} \\ & \text { Translation } \\ & {\left[\begin{array}{c} 0.5 \\ * \end{array}\right]} \\ & {\left[\begin{array}{c} 0.5 \\ 10.25 \end{array}\right]} \end{aligned}$	M1 A1 B1F E1 M1 A1		$\begin{aligned} & (x-3.5)^{2} \ldots \text { OE } \\ & (x-3.5)^{2}-10.25 \\ & \text { must FT their } q \\ & \text { or translate(d) (by/through) } \\ & \text { (and no other transformation given) } \end{aligned}$ must express as vector to earn A1 mark
	Total		6	
(a)(i) (ii) (b)	If M1 is not earned, award $\mathbf{S C} 1$ for $\left(x-\frac{7}{2}\right)-\frac{41}{4}$ Do NOT accept any pair of values. Example (3.5, -10.25) scores B0 since this is hedging bets Condone $y=$ "their" q for $\mathbf{B} 1$ but $x=$ "their" q scores $\mathbf{B} \mathbf{0}$ Do NOT accept "shift", "move", "slide", "transformation", "trans" etc for E1 Accept " 0.5 in x-direction", " $\frac{1}{2}$ to the right" , " $\left(0.5,{ }^{*}\right)$ " for M1 only			

\begin{tabular}{|c|c|c|c|c|}
\hline Q4 \& Solution \& Mark \& Total \& Comment

\hline (a)(i)
(ii)
(b)(i)

(ii) \& | $\left.\begin{array}{l} \begin{array}{rl} (\mathrm{p}(-3)) & =(-3)^{3}-5(-3)^{2}-8(-3)+48 \\ & =-27-45+24+48 \\ & =0 \end{array} \\ \text { therefore } x+3 \text { is a factor } \end{array}\right]$ $\begin{aligned} & \begin{array}{l} x^{2}+b x+c \text { with } b=-8 \quad \text { or } \quad c=16 \\ \\ x^{2}-8 x+16 \end{array} \\ & \begin{aligned} (\mathrm{p}(x)=) \quad(x+3)(x-4)(x-4) \end{aligned} \\ & \begin{aligned} \mathrm{p}(2) & =2^{3}-5 \times 2^{2}-8 \times 2+48 \\ & =8-20-16+48 \end{aligned} \\ & \text { (Remainder }=) 20 \end{aligned}$ |
| :--- |
| Quadratic factor $x^{2}+b x+c$ $b=-3 \quad \text { or } \quad c=-14$ $x^{2}-3 x-14$ $(\mathrm{p}(x)=) \quad(x-2)\left(x^{2}-3 x-14\right)+20$ | \& M1

A1
M1
M1
A1
A1
M1
A1
A1
M1
A1

A1 \& 2 \& | clear attempt at $\mathrm{p}(-3)$ NOT long division must see powers of -3 simplified correctly working showing that $\mathrm{p}(-3)=0$ and correct statement |
| :--- |
| by inspection may see as quotient in long division |
| must see product |
| clear attempt at p (2) NOT long division |
| by inspection |
| may see as quotient in long division must see full correct expression |

\hline \& Total \& \& 10 \&

\hline (a)(i)
(ii)
(b)(i)

(ii) \& \multicolumn{4}{|l|}{| Minimum required for statement is " \therefore factor" |
| :--- |
| Powers of -3 must be evaluated: Example "p(-3)=-27-45+24+48=0 so factor" scores M1 A1 |
| Statement may appear first : |
| Example " $x+3$ is factor if $\mathrm{p}(-3)=0 \& \mathrm{p}(-3)=-27-45+24+48=0$ " scores M1 A1 |
| However, Example " $\mathrm{p}(-3)=(-3)^{3}-5(-3)^{2}-8(-3)+48=0$ therefore $x+3$ is a factor" scores M1 A0 |
| M1 may also be earned for a full long division attempt by $(x+3)$, or a clear attempt to find a value for both b and c (even though incorrect) by comparing coefficients . |
| M1 may also be earned for showing $\mathrm{p}(4)=0$ and stating that $(x-4)$ is a factor |
| NMS $\mathrm{p}(x)=(x+3)(x-4)^{2}$ scores $\mathbf{3}$ marks; |
| Do not apply ISW for eg " $p(2)=20$, therefore remainder is -20 " |
| May use "their" product of factors $\mathrm{p}(2)=(2+3)(2-4)(2-4)$ for $\mathbf{M 1}$ and $\mathbf{A 1}$ if factors and working are all correct giving 20. |
| M1 may be earned for a full long division attempt by ($x-2$), or a clear attempt to find a value for both b and c (even though incorrect) by comparing coefficients . |
| M1 may also be earned for using their value from part (b)(i) for r and a full attempt to find b and c. |}

\hline
\end{tabular}

Q5	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & (x-5)^{2}+(y+3)^{2}=\ldots \\ & 7^{2}+4^{2} \quad \text { or } 49+16 \text { or } 65 \\ & (x-5)^{2}+(y+3)^{2}=65 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{gathered}$	3	or $(x-5)^{2}+(y--3)^{2}=\ldots$ or seen under square root or $(x-5)^{2}+(y--3)^{2}=65$
(b)	$\begin{array}{ll} x_{B}=12 & \\ y_{B}=-7 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$B(12,-7)$
(c)	$\begin{aligned} \operatorname{Grad} A C & =\frac{1--3}{-2-5} \\ & =-\frac{4}{7} \end{aligned}$	M1 A1		condone one sign error in one term FT their B if $\operatorname{grad} A B$ or $\operatorname{grad} B C$ is used.
	$\text { Grad tgt }=\frac{7}{4}$	B1F		
	Equation of tgt: $y-1=$ "their $" \frac{7}{4}(x--2)$	m1		or $y=$ "their $" \frac{7}{4} x+c \&$ attempt to find c using $x=-2$ and $y=1$
	$7 x-4 y+18=0$	A1	5	any multiple - must have integer coefficients and all terms on one side
(d)	$\begin{aligned} & C T^{2}=A T^{2}+A C^{2} \\ & \left(C T^{2}=\right) 4^{2}+\text { "their" } 65 \end{aligned}$	M1		Pythagoras with hyp $=C T$ \& $A C^{2}=$ "their" k or correct
	$\left(C T^{2}=\right) 81$	A1		or $(C T=) \sqrt{81}$
	$(C T=) 9$	A1	3	all notation correct; must simplify $\sqrt{81}$
	Total		13	
(a)	NMS $(x-5)^{2}+(y+3)^{2}=65$ scores 3 mar allow RHS $=(\sqrt{65})^{2}$ instead of 65 for full Example: $(x-5)^{2}+(y+3)^{2}=\sqrt{65}$ earns Equation of circle must be written explicitly	arks 1 B1 A as $(x-$	2 $+(y+3)^{2}$	$)^{2}=65$ to earn A1 mark
(c)	Award M1 A0 for grad $A C=4 / 7$ For $\mathbf{m} \mathbf{1}$ candidate must be attempting equation of tangent; if B1F not earned and their gradient of $A C$ is m then award $\mathbf{m} \mathbf{1}$ if using $1 / m$ or $-m$ and correct coordinates $(-2,1)$. For final A1 accept answers such as $0=8 y-14 x-36$ but NOT $7 x-4 y=-18$			
(d)	Example: $4^{2}+65=81=9$ scores M1, A1, A0 ; Example: $4^{2}+65=81, \sqrt{81}=9$ scores M1, A1, A1			

\begin{tabular}{|c|c|c|c|c|}
\hline Q6 \& Solution \& Mark \& Total \& Comment

\hline (a)(i)
(ii)
(b)(i)

(ii) \& \[
$$
\begin{aligned}
& (x=) \frac{4 \pm \sqrt{80}}{-4}, \text { or }(x=) \frac{-4 \pm \sqrt{80}}{4} \\
& \text { or }(x=) \frac{-2 \pm \sqrt{20}}{2} \\
& (x=)-1 \pm \sqrt{5} \\
& k(x+4)=8-4 x-2 x^{2} \\
& 2 x^{2}+k x+4 x+4 k-8=0 \\
& 2 x^{2}+(k+4) x+4(k-2)=0 \\
& (k+4)^{2}-4 \times 2 \times 4(k-2) \quad(=0) \\
& k^{2}-24 k+80 \quad(=0) \\
& k=4, \quad k=20
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |
| A1cso | \& \& | if completing square must have at least $x+1= \pm \sqrt{5}$ |
| :--- |
| do not accept $-1 \pm-\sqrt{5}$ for A1 |
| \bigcap shape as shown in all 4 quadrants, max to left of y-axis with y-intercept 8 stated/marked |
| must expand $k(x+4) \&$ have all terms on one side with $=0$ before final line AG be convinced |
| correct discriminant |

\hline \& Total \& \& 8 \&

\hline (a)(ii)
(b)(i)

(ii) \& \multicolumn{4}{|l|}{| Withhold A1 if maximum y-value is clearly not greater than 8 , or graph has wrong curvature in third and fourth quadrants. |
| :--- |
| Do not withhold A1 if incorrect x-intercepts are marked on x-axis, etc. |
| Accept $(0,8)$ stated or marked on y-axis as y-intercept, but do NOT accept $(8,0)$. |
| Must have " $=0$ " on final line but this may be on LHS. |
| Do not accept incorrect "trailing equal" signs, ie from line 1 to line 2 of proof. |
| Condone poor use/omission of brackets for M1 if correct discriminant is intended, but the A1 cso cannot then be earned even if recovered later. Candidates must have " $=0$ " on at least one line of working or statement " $b^{2}-4 a c=0$ " and all working correct to earn A1cso. |
| If candidate uses " >0 " etc then withhold A1cso even if final answer is written as $k=4, \quad k=20$. |}

\hline
\end{tabular}

