

# General Certificate of Education June 2010 

Mathematics
MPC1

Pure Core 1

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

## COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

## Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{lll}\text { M } & \text { mark is for method } & \\ \hline \mathrm{m} \text { or } \mathrm{dM} & \text { mark is dependent on one or more } \mathrm{M} \mathrm{marks} \text { and is for method } \\ \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } \mathrm{m} \text { marks and is for accuracy }\end{array}\right]$

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

## Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1(a) | $y=\frac{14}{3}-\frac{2}{3} x$ <br> Gradient $A B=-\frac{2}{3}$ | M1 A1 | 2 | Attempt at $y=\ldots$ <br> Condone error in rearranging equation |
| (b)(i) | $y-7=" \text { their grad } A B "(x-3)$ | M1 |  | or $2 x+3 y=k$ and $\operatorname{sub} x=3, y=7$ or $y=m x+c, m=$ their grad $A B$ and attempt to find $c$ using $x=3, y=7$ |
|  | $y-7=-\frac{2}{3}(x-3) \quad \text { OE }$ | A1 | 2 | $2 x+3 y=27 \quad, \quad y=-\frac{2}{3} x+9$ etc |
| (ii) | $m_{1} m_{2}=-1$ | M1 |  | or negative reciprocal (stated or used PI) |
|  | $\Rightarrow \operatorname{grad} A D=\frac{3}{2}$ | A1 $\checkmark$ |  | FT their $\operatorname{grad} A B$ |
|  | $y-7=\frac{3}{2}(x-3)$ | A1 |  | Any correct equation unsimplified |
|  | $\Rightarrow 3 x-2 y+5=0$ | A1 | 4 | Integer coefficients; all terms on one side, condone different order or multiples. $\text { eg } 0=4 y-6 x-10$ |
| (c) | $2 x+3 y=14$ and $5 y-x=6$ used with $x$ or $y$ eliminated (generous) | M1 |  | $2(5 y-6)+3 y=14 \quad \text { etc }$ |
|  | $\begin{array}{r} x=4, \\ y=2 \end{array}$ | $\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$ | 3 | $B(4,2)$ full marks NMS |
|  | Total |  | 11 |  |
| 2(a) | $(3-\sqrt{5})^{2}=9-6 \sqrt{5}+(\sqrt{5})^{2}$ |  |  | Allow one slip in one of these terms M0 if middle term is omitted |
|  | $=14-6 \sqrt{5}$ | A1 | 2 |  |
| (b) | $\frac{(3-\sqrt{5})^{2}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$ | M1 |  | or $\ldots \times \frac{\sqrt{5}-1}{\sqrt{5}-1}$ |
|  | $\begin{array}{r} 14+6 \sqrt{5} \sqrt{5}-6 \sqrt{5}-14 \sqrt{5} \\ (=44-20 \sqrt{5}) \end{array}$ | m1 |  | Expanding their numerator (condone one error or omission) |
|  | $($ Denominator $)=-4$ | B1 |  | Must be seen as denominator |
|  | $(\text { Answer })=-11+5 \sqrt{5}$ | A1 | 4 | Accept "answer $=5 \sqrt{5}-11$ " |
|  | Total |  | 6 |  |

## MPC1 (cont)

| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 3(a)(i) | $\begin{aligned} \mathrm{p}(-3) & =(-3)^{3}+7(-3)^{2}+7(-3)-15 \\ & =-27+63-21-15 \end{aligned}$ | M1 |  | $\mathrm{p}(-3)$ attempted; NOT long division This line alone implies M1 |
|  | $\mathrm{p}(-3)=0 \Rightarrow(x+3$ is) factor | A1 | 2 | $\mathrm{p}(-3)$ shown $=0$ plus statement |
| (ii) | $\mathrm{p}(x)=(x+3)\left(x^{2}+p x+q\right)$ | M1 |  | Full long division, comparing coefficients or by inspection either $p=4$ or $q=-5$ |
|  | (Quadratic factor) $\left(x^{2}+4 x-5\right)$ | A1 |  | or M1 A1 for either $x-1$ or $x+5$ clearly found using Factor Theorem |
|  | $(\mathrm{p}(x)=)(x+3)(x-1)(x+5)$ | A1 | 3 | Must be seen as a product of 3 factors NMS full marks for correct product |
|  |  |  |  | SC B2 for 3 correct factors listed NMS SC B1 for $(x+3)(x-1)()$ <br> or $(x+3)(x+5)()$ <br> or $(x+3)(x+1)(x-5)$ |
| (b) | $\begin{gathered} \mathrm{p}(2)=2^{3}+7 \times 2^{2}+7 \times 2-15 \\ \text { or }(2+3)(2-1)(2+5) \end{gathered}$ | M1 |  | NOT long division; must be $\mathrm{p}(2)$ <br> May use "their" product of factors |
|  | $($ Remainder $)=35$ | A1cso | 2 |  |
| (c)(i) | $\begin{gathered} \mathrm{p}(-1)=-16 ; \mathrm{p}(0)=-15 \\ \Rightarrow \mathrm{p}(-1)<\mathrm{p}(0) \end{gathered}$ | B1 | 1 | Values must be evaluated correctly |
| (ii) | y 4 | B1 |  | $y$ - intercept -15 marked or $(0,-15)$ stated |
|  |  | M1 |  | Cubic graph - 1 max, 1 min |
|  | $\left.\begin{array}{ll\|l} -5 & -3 \end{array}\right) \quad 1 \longrightarrow$ | A1 |  | $\sim$ shape with $-5,-3,1$ marked |
|  | 1 | A1 | 4 | Graph correct with minimum point to left of $y$-axis and going beyond both -5 and 1 |
|  | Cannot score M1A0A1 but can score B0M1A1A1 |  |  |  |
|  | Total |  | 12 |  |

## MPC1 (cont)

| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 4(a)(i) | $x^{5} \quad 8$ | M1 |  | One term correct |
|  | $\frac{x^{5}}{5}-\frac{8}{2} x^{2}+9 x$ | A1 |  | Another term correct |
|  | $\frac{5}{5} \quad 2$ | A1 |  | All correct (may have $+c$ ) |
|  | $\frac{32}{5}-16+18$ | m1 |  | F(2) attempted |
|  | $=8 \frac{2}{5}$ | A1 | 5 | $\frac{42}{5}, 8.4$ |
| (ii) | Shaded area $=18-$ 'their integral' | M1 |  | PI by 18 - (a)(i) NMS |
|  | $=9 \frac{3}{5}$ | A1 | 2 | $\frac{48}{5}, 9.6$ NMS full marks |
| (b)(i) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}-8$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ |  | One term correct <br> All correct (no $+c$ etc) |
|  | $x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=4-8$ | m1 |  | $\operatorname{sub} x=1 \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} x}$ |
|  | $($ Gradient of curve $)=-4$ | A1cso | 4 | No ISW |
| (ii) | $y-2=-4(x-1) ; \quad y=-4 x+c, c=6$ | B1J | 1 | any correct form ; FT their answer from (b)(i) but must use $x=1$ and $y=2$ |
|  | Total |  | 12 |  |

MPC1 (cont)


## MPC1 (cont)

| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 6(a)(i) | $\begin{aligned} \text { S.A. } & =4 x y+5 x y+3 x y+6 x^{2}+6 x^{2} \quad \text { OE } \\ & =12 x y+12 x^{2} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  | Condone one slip or omission |
|  | $144=12 x y+12 x^{2}$ |  |  | Must see this line |
|  | $\Rightarrow x y+x^{2}=12$ | A1cso | 3 | AG |
| (ii) | $(\text { Volume }=) \frac{1}{2} \times 3 x \times 4 x \times y \quad \text { OE }$ | M1 |  |  |
|  | $=6 x^{2} \times \frac{\left(12-x^{2}\right)}{x}$ |  |  | Must see $(y=) \frac{\left(12-x^{2}\right)}{x}$ or $x y=12-x^{2}$ for A1 |
|  | $(V=) 72 x-6 x^{3}$ | A1 | 2 | AG must be convinced not working back from answer |
| (b)(i) | $\frac{\mathrm{d} V}{\mathrm{~d} x}=72-18 x^{2}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | 2 | One term correct <br> All correct (no $+c$ etc) |
| (ii) | $\begin{aligned} x & =2 \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} x}=72-18 \times 2^{2} \\ & \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} x}=72-72=0 \end{aligned}$ | M1 |  | Substitute $x=2$ into their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ |
|  | $\Rightarrow$ stationary (value when $x=2$ ) | A1 | 2 | Shown $=0$ plus statement <br> Statement may appear first |
| (c) | $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-36 x$ | B1J |  | FT their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ |
|  | $\begin{aligned} \frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-72 \text { or } \text { when } x=2 & \Rightarrow \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}<0 \\ & \Rightarrow \text { maximum } \end{aligned}$ | E1」 | 2 | FT their $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ value when $x=2$ with appropriate conclusion |
|  | Total |  | 11 |  |

## MPC1 (cont)

| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 7(a)(i) | $2(x-5)^{2}$ | B1 |  | $p=5$ |
|  | + 3 | B1 | 2 | $q=3$ |
| (ii) | $\begin{aligned} & \text { Stating both }(x-5)^{2} \geqslant 0 \quad \text { and } \quad 3>0 \\ & \Rightarrow 2 x^{2}-20 x+53>0 \text { or } 2(x-5)^{2}+3>0 \end{aligned}$ | M1 |  | FT their $p \& q$, but must have $q>0$ |
|  | $\Rightarrow 2 x^{2}-20 x+53=0$ has no real roots | A1cso | 2 | Must have statement and correct $p$ \& $q$. |
| (b)(i) | $b^{2}-4 a c=(k+1)^{2}-4 k(2 k-1)$ | M1 |  | Condone one slip (including $x$ is one slip) |
|  | $\begin{array}{r} =-7 k^{2}+6 k+1 \\ \text { real roots } \Rightarrow b^{2}-4 a c \geqslant 0 \end{array}$ | A1 |  | Condone recovery from missing brackets Their discriminant $\geqslant 0$ (in terms of $k$ ) |
|  | $-7 k^{2}+6 k+1 \geqslant 0$ | B1ヶ |  | Need not be simplified \& may earn earlier |
|  | $\Rightarrow 7 \mathrm{k}^{2}-6 \mathrm{k}-1 \leqslant 0$ | A1cso | 4 | AG (must see sign change) |
| (ii) | $(7 k+1)(k-1)$ | M1 |  | Correct factors or correct use of formula |
|  | Critical values $k=1,-\frac{1}{7}$ | A1 |  | May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working. |
|  | Use of sign diagram or sketch | M1 |  | If previous A1 earned, sign diagram or sketch must be correct for M1 |
|  |  |  |  | Otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critical values. |
|  | $-\frac{1}{7} \leqslant k \leqslant 1$ | A1 | 4 | $\left(-\frac{1}{7}<k<1\right),\left(k \geqslant-\frac{1}{7} \text { OR } k \leqslant 1\right),$ |
|  | Full marks for correct answer NMS |  |  | $\left(k \geqslant-\frac{1}{7}, k \leqslant 1\right)$ score M1A1M1A0 |
|  | Condone $-\frac{2}{14}$ throughout |  |  | Answer only of $k<-\frac{1}{7}, \quad k<1$ etc |
|  | Condone $k \geqslant-\frac{1}{7}$ AND $k \leqslant 1$ for full |  |  | values are evident. <br> Answer only of $\frac{1}{7} \leqslant k \leqslant 1$ etc |
|  | Take their final line as their answer. |  |  | scores M0, M0 since the critical values are not both correct. |
|  | Total |  | 12 |  |
|  | TOTAL |  | 75 |  |

