AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname \qquad
Forename(s) \qquad
Candidate signature \qquad
AS

MATHEMATICS

Unit Pure Core 1

Wednesday 17 May 2017 Morning

Materials

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is not permitted.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 (a) Express $\frac{1+4 \sqrt{7}}{5+2 \sqrt{7}}$ in the form $m+n \sqrt{7}$, where m and n are integers.
[4 marks]
(b) Solve the equation

$$
x(9 \sqrt{5}-2 \sqrt{45})=\sqrt{80}
$$

giving your answer in its simplest form.

QUESTION REFERTRNCE	Answer space for question 1

QuESTON RFFRRENCE	Answer space for question 1

2 A curve has equation $y=20 x-x^{2}-2 x^{3}$. The curve has a stationary point at the point M where $x=-2$.
(a) Find the x-coordinate of the other stationary point of the curve.
(b) Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at the point M, and hence determine, with a reason, whether M is a minimum point or a maximum point.
(c) Sketch the curve.

$\substack{\text { OUESTRON } \\ \text { REFRRENCE }}$	Answer space for question 2

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 2

3 The polynomial $\mathrm{p}(x)$ is given by

$$
\mathrm{p}(x)=x^{3}+b x^{2}+c x+24
$$

where b and c are integers.
(a) Given that $x+2$ is a factor of $\mathrm{p}(x)$, show that $2 b-c+8=0$.
(b) The remainder when $\mathrm{p}(x)$ is divided by $x-3$ is -30 .

Obtain a further equation in b and c.
(c) Use the equations from parts (a) and (b) to find the value of b and the value of c.

$\substack{\text { QUESTTON } \\ \text { REFRRENCE }}$	Answer space for question 3

QUESTTON REFERENCE	Answer space for question 3

4 The point A has coordinates $(-2,5)$ and the point B has coordinates $(8,-6)$.
(a) Find an equation for the straight line $A B$, giving your answer in the form $p x+q y=r$, where p, q and r are integers.
(b) The point C has coordinates $(k, k+1)$. Given that angle $A C B$ is a right angle, find the two possible values of k.
[5 marks]

$\substack{\text { QUESTRON } \\ \text { REFRRENCE }}$	
	Answer space for question 4

QuESTON RFFRRENCE	Answer space for question 4

5 A curve and the line $A B$ are sketched below.

The curve has equation $y=2 x^{4}-3 x^{3}+4$ and the points $A(-1,9)$ and $B(2,12)$ lie on the curve.
(a) Find the equation for the normal to the curve at the point A, giving your answer in the form $y=m x+c$.
(b) (i) Find $\int_{-1}^{2}\left(2 x^{4}-3 x^{3}+4\right) \mathrm{d} x$.
(ii) Hence find the area of the shaded region bounded by the curve and the line $A B$.
[3 marks]

$\substack{\text { QUEATRON } \\ \text { REFRRENEE }}$	Answer space for question 5

QUESTTON REFERENCE	Answer space for question 5

QUESTTON REFRRENCE	Answer space for question 5

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 5
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
_	
-	

$6 \quad$ A circle with centre C has equation $x^{2}+y^{2}+20 x-14 y+49=0$.
(a) Express this equation in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(b) Show that the circle touches the y-axis and crosses the x-axis in two distinct points.
(c) A line has equation $y=k x+2$, where k is a constant.
(i) Show that the x-coordinates of any points of intersection of the circle and the line satisfy the equation

$$
\left(1+k^{2}\right) x^{2}+10(2-k) x+25=0
$$

(ii) Hence, find the value of k for which the line is a tangent to the circle.

$\begin{gathered} \begin{array}{c} \text { OUESTON } \\ \text { REFRRRENCE } \end{array} \end{gathered}$	Answer space for question 6

7 The diagram shows the right-angled corner $A F E$ of a building and four sections of fencing running parallel to the walls of the building.

Each of the sections of fencing $A B$ and $D E$ has length x metres and each of the sections of wall $A F$ and $F E$ has length y metres. The total length of the four sections of fencing $A B, B C, C D$ and $D E$ is 15 metres. The shaded region bounded by the fencing and the walls of the building has area $S \mathrm{~m}^{2}$.
(a) (i) Express y in terms of x.
(ii) Show that $S=3\left(5 x-x^{2}\right)$.
(b) (i) Express $5 x-x^{2}$ in the form $p-(x-q)^{2}$, where p and q are rational numbers.
(ii) Hence find the maximum value of S.

QUESTION REFERT RENCE	Answer space for question 7

QuESTON RFFRRENCE	Answer space for question 7

8 The water level in a reservoir rises and falls during a four-hour period of heavy rainfall. The height, $h \mathrm{~cm}$, of water above its normal level, t hours after it starts to rain, can be modelled by the equation

$$
h=4 t^{3}-\frac{59}{2} t^{2}+72 t, \quad 0 \leqslant t \leqslant 4
$$

(a) Find the rate of change of the height of water, in cm per hour, 3 hours after it starts to rain.
(b) Find the values of t for which the height of the water is decreasing.
[5 marks]

$\substack{\text { QUESTTON } \\ \text { ReFERENCEE }}$	Answer space for question 8

$\substack{\text { QUESTION } \\ \text { REFERRENCE }}$	Answer space for question 8

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

