AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname \qquad
Forename(s)
Candidate signature

GCSE
 MATHEMATICS

Foundation Tier Paper 1 Non-Calculator

Tuesday 6 November 2018 Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- mathematical instruments

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
22	
TOTAL	

- The maximum mark for this paper is 80 .
- You may ask for graph paper, tracing paper and more answer paper.

These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

1 Work out $(-3)+(-8)$
Circle your answer.
-5

2 What does the longest bar in a bar chart represent?
Circle your answer.
(5)
-11
11
,
N-
都

3 Work out 1.1-0.15
Circle your answer.

-0.15
0.95
1.05
0.85
1.085
0.95

Answer £ \qquad

7 A helicopter blade does 3206 full turns in 7 minutes.
Work out the number of full turns per minute.
$\frac{0458}{7 \longdiv { \beta ^ { 3 } 2 ^ { 4 } 0 ^ { 5 } 6 }}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$8 \quad$ At a cinema, films are shown on Screen 1 and Screen 2
Customers pay full price or child price.
There are three times as many customers in Screen 2 as Screen 1 68 customers paid child price.

Complete the frequency tree.

Work out the fraction that is halfway between $\frac{1}{2}$ and $1 \frac{1}{4}$
0

$\frac{1}{4}=\frac{5}{4}=\frac{10}{8}$
$\frac{10}{2}+\frac{4}{8}=\frac{14}{8}$
$\frac{14}{8} \div 2=\frac{7}{8}$

Answer \qquad
$10 \quad x$ is a positive integer.
$35 \div x$ is a positive integer.
Work out the four possible values of x.
x must be a factor of 35 .
Answer $1 \quad 5 \quad 7 \quad 35$

11 A fair dice has six sides, numbered 1 to 6	
After it is rolled, five of the numbers can be seen.	
11 (a) Write down the probability that one of these five numbers is 2	[1 mark]
Answer	

Answer $\frac{5}{6}$

11 (b) Work out the greatest possible sum of the five numbers.
\qquad
$2+3+4+5+6=20$

Answer \qquad

Turn over for the next question

15 Trapezium $A B C E$ is made from parallelogram $A B C D$ and isosceles triangle $A D E$. $A E=D E$

Not drawn accurately

Work out the size of angle AED.
$\angle A D C$ is the same as $\angle A B C=110^{\circ}$ $\angle E D A=70^{\circ} \quad(180-110)$
$\triangle A D E$ is isosceles $\therefore \angle E A D=70^{\circ}$
$\angle A E D=180-(70+70)=40^{\circ}$

Answer \qquad degrees

16

$$
\begin{aligned}
& a: b=1: 6 \\
& a: c=3: 1
\end{aligned}
$$

How many times bigger is b than c ?

$$
a: b: c
$$

\square

$$
(\times 3)^{-}
$$

$3: 1 \quad \therefore b$ is 18 times bigger than c

$$
3: 18: 1
$$

Answer \qquad

17 (a) Laura wants to work out 3% of 1700
Her method is $\quad 1700 \times 0.3$
Is her method correct?
Tick a box.

Give a reason for your answer.
Multiplying by 0.3 finds 30\%
\qquad
\qquad

17 (b) Laura also wants to work out $\frac{30}{29}$ of 60
Her answer is 58
Is her answer correct?
Tick a box.

Give a reason for your answer.
[1 mark]
The traction is top-heavy so the answer would be larger.

18 Here are five shapes, A to E.

A	Parallelogram
B	Regular pentagon
C	Rhombus
D	Scalene triangle
E	Trapezium

In the Venn diagram,
ξ is the set of all shapes
Q is the set of quadrilaterals
R is the set of shapes which always have rotational symmetry.

Complete the Venn diagram with the letters A to E .
位

R is

[3 marks]

Work out the value of $\quad \frac{a}{b}-a^{b}$
$\frac{7}{2}-7^{2}$
3.5-49
-45.5

Answer \qquad

20
Solve
$3 x-8=19$

$$
\begin{aligned}
3 x-8= & 19 \\
+8 & +8 \\
3 x= & 27 \\
\div 3 & \div 3 \\
x & =9
\end{aligned}
$$

$$
x=
$$

\qquad

Two of the five cards are picked at random.
Work out the probability that the total of the two numbers is more than 30
[3 marks]

	17	12	23	15	16
17		29	40	32	33
12	29		35	27	28
23	40	35		38	39
15	32	27	38		31
16	33	28	39	31	

Cannot pick the same card twice.
$P_{(>30)}=\frac{14}{20}=\frac{7}{10}$

Answer \qquad

22 (a) Complete the table of values for $y=x^{2}$

x	-2	-1	0	1	2
y	4	1	0	1	4

22 (b) Draw the graph of $y=x^{2}$ for values of x from -2 to 2

22 (c) Use your graph to estimate the value of $\sqrt{2.6}$
Answer 1.6 and -1.6
23 (a) Two consecutive whole numbers are n and $n+1$

Answer \qquad

$$
\text { Answer } \quad \bigcap^{2}+\cap
$$

23 (c) The two numbers are added.
Show that the answer must be an odd number.

$$
n+(n+1)=2 n+1
$$

$2 n$ must be even as all multiples of 2 are $2 n+1$ must be odd as even +1 =odd
\qquad

26 A ship is sailing in a straight line from its home port. The distance-time graph shows 4 hours of the journey.

Work out the speed of the ship during these 4 hours.
Speed is given by the gradient of the line
$\frac{\Delta y}{\Delta x}=\frac{116-48}{4-0}=\frac{68}{4}=17$ miles per hour

Answer \qquad mph

27 Kim works at an airport in the UK.
She records the number of planes landing between 10 am and 2 pm each day.
The table shows the data for the first 10 days in January.

Day	1	2	3	4	5	6	7	8	9	10
Number of planes	148	151	147	155	153	147	155	102	151	154

27 (a) The airport was affected by fog on one of the days.
Which day do you think it was?
Give a reason for your answer.

Day 8
Reason 102 is an outlier, all the others are in the range $147 \rightarrow 155$

27 (b) Kim uses the data to predict how many planes will land at the airport in a year. In her method, she
uses an estimate of 150 planes in each 4-hour period throughout the day assumes the same number of planes each day.

Work out her prediction.

$24 \div 4=6$	365
$150 \times 6=900$	$\frac{\times-5+9}{9285}$
$900 \times 365=328500$	-

Answer \qquad

27 (c) In fact,
fewer planes land in winter than in summer
fewer planes land at night than during the day.
What does this tell you about Kim's prediction?
Tick one box.

Give a reason for your answer.
[2 marks]
There is not enough information to decide.
\qquad
\qquad

Turn over for the next question

28 The sum of the angles in any quadrilateral is 360°
For example, in a rectangle $4 \times 90^{\circ}=360^{\circ}$
Zak writes,

$$
5 \times 90^{\circ}=450^{\circ} \text { so the sum of the angles in any pentagon must be } 450^{\circ}
$$

Is he correct?
Tick a box.

Show working to support your answer.

$$
\begin{aligned}
\text { Interior Angles } & =(\text { number of sides }-2) \times 180 \\
& =(5-2) \times 180 \\
& =3 \times 180 \\
& =540^{\circ}
\end{aligned}
$$

Tick

$29 \quad \sqrt{6^{2}+8^{2}}=\sqrt[3]{125 a^{3}}$
Work out the value of a.
$\sqrt{6^{2}+8^{2}}=\sqrt[3]{125 a^{3}}$
$\sqrt{36+64}=\sqrt[3]{125 a^{3}}$
$\sqrt{100}=\sqrt[3]{125 a^{3}}$
$10=5 a$
$\div 5 \div 5$
$2=a$

Answer \qquad

Work out the percentage increase from 80 to 280

$$
280-80=200
$$

$$
\frac{280}{80} \times 100=2.5 \times 100=250 \%
$$

Answer \qquad \%

Turn over for the next question

$$
(x-4)(x+3)=\varnothing
$$

$$
\begin{array}{cc}
x-4=0 & x+3=\varnothing \\
+4+4 & -3
\end{array}
$$

$$
x=4 \quad x=-3
$$

Answer \qquad

END OF QUESTIONS

