GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW)
MATHEMATICS - UNIT 2 (HIGHER)
3300 U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017	\checkmark	Mark	MARK SCHEME Comments
1.(a) 25.1		B2	B1 for 25(•...).
1.(b) -14.3		B2	B1 for 14.3 OR -14-2(....)
2. $\begin{aligned} 3 x-2+2 x+1+5 x-9 & =180 \\ 10 x & =190 \\ x & =19 \end{aligned}$	\checkmark \checkmark \checkmark \checkmark	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	F.T. from $\mathrm{ax}=\mathrm{b}$. Allow all 3 marks for $\mathrm{x}=19$.
Substituting $x=19$ into at least one expression. $(3 x-2=) 55\left({ }^{\circ}\right)(2 x+1=) 39\left({ }^{\circ}\right)(5 x-9=) 86\left({ }^{\circ}\right)$ (So not a right-angled triangle)	\checkmark \checkmark	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	If $x \neq 19$ F.T. 'their derived value of x '. F.T. for this A1 if $x \geq 2$. Any two of these expressions correctly evaluated with no incorrect evaluation, provided the sum of the two found is >90. (statement not required)
3.			Correct evaluation regarded as enough to identify if negative or positive. Evaluations can be rounded or truncated. If evaluations not seen condone 'too high' or 'too low'. Look out for testing for $x^{3}-2 x=45$. $\underline{x} \quad \underline{x^{3}-2 x-45}$
One correct evaluation $3 \leq x \leq 4$	\checkmark	B1	$3 \quad-24$
2 correct evaluations $3 \cdot 65 \leq x \leq 3 \cdot 85$,	\checkmark	B1	$3 \cdot 1 \quad-21.409$
one <0, one >0.			$3.2 \quad-18.632$
2 correct evaluations $3 \cdot 65 \leq x \leq 3 \cdot 75$, one < 0, one > 0	\checkmark	M1	$3.3 \quad-15.663$
one <0, one >0.			$3.4 \quad-12.496$
	\checkmark		$3.5-9.125-3.55-7.361 \ldots$
		A1	$3.6-5.544-3.65-3.672 \ldots$
			$3 \cdot 7-1.747-3.74-0.166 \ldots$
			3.8 2.272 3.75 0.234...
4. $\quad 16 \cdot 9^{2}=6 \cdot 5^{2}+\mathrm{MN}^{2}$ or equivalent. $\left(\mathrm{MN}^{2}\right)=243 \cdot 36$ or $(\mathrm{MN})=\sqrt{ } 243 \cdot 36$ $(\mathrm{MN}=) \quad 15 \cdot 6(\mathrm{~cm})$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Allow M1 for $16 \cdot 9^{2}-6 \cdot 5^{2}$. C.A.O.
5. Correct construction of 90° at point B. Correct construction of angle BAC $=60^{\circ}$.		B2	With sight of accurate 'method arcs'. e.g . (i) $A B$ extended with arcs either side of B on extended line $A B$ (or line $A B$ extended by 7 cm) AND arcs above or below point B). (ii) construction of $60^{\circ}, 120^{\circ}$ and a bisection. B1 for complete method but line not drawn. With sight of accurate 'method arcs' and line drawn. If all three marks gained but triangle not completed penalise -1 mark. (Treat reversal of angles as a misread.)
6. $\begin{aligned} & \frac{\mathrm{QR}}{18}=\tan 24\left({ }^{\circ}\right) \\ & \begin{aligned} \mathrm{QR}=18 \times \tan 24\left({ }^{\circ}\right) & \\ & =8(\cdot 01 . .)(\mathrm{cm}) \end{aligned} \end{aligned}$		M1 m1 A1	$\begin{array}{ll} \hline \text { OR } & \frac{Q R}{\sin 24}=\frac{18}{\sin 66} \\ & Q R=\frac{18 \times \sin 24}{\sin 66} \\ \text { C.A.O. } \end{array}$

GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017	\checkmark	Mark	MARK SCHEME Comments
7.(a) $0 \cdot 3(0)$ on 'box C branch'.		B1	
7.(b) Sight of 0.45×0.7 OR 0.25×0.4 OR 0.3×0.8 $\begin{aligned} & 0.45 \times 0.7+0.25 \times 0.4+0.3 \times 0.8 \\ & (0.315+0.1+0.24) \\ & \quad=0.655 \text { or } 131 / 200 \text { or equivalent ISW } \end{aligned}$		B1 M1 A1	FT 'their 0.3' from box C branch, only if, between 0 and 1. Provided less than 1.
7.(c) $\frac{1}{3}$		B1	F.T. for the fraction that is the nearest to 1- 'their $0 \cdot 655$ ' provided $0<$ 'their $0 \cdot 655$ ' <1 Correct answer of $1 / 3$ gains B1 regardless.
8.(a) $\quad x\left(x^{2}-5\right)$		B1	
8.(b) $2 x^{2}+5 x-12$		B2	B1 for $2 x^{2}+k x-12$ OR $2 x^{2}+5 x+k$
8.(c) (x-7)(x+4) ISW		B2	B1 for (x ... 7)(x ... 4).
9.(a) $3 y=2 x+7$		B1	
9.(b) $y=-\frac{x}{5}+3$		B1	
10. $\begin{aligned} & 360-2 \times 37 \\ &=286\left(^{\circ}\right) \end{aligned}$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	SC1 for sight of 74(${ }^{\circ}$.
11. $\frac{\mathrm{BD} \times 5}{2}=35$	\checkmark	M1	
$B D=14(\mathrm{~cm})$	\checkmark	A1	May be seen on the diagram. Note: If they state that $A B=14 \mathrm{~cm}$, or indicate on the diagram that $A B=14 \mathrm{~cm}$ then it is MOAO as an incorrect method used for area of a right-angled triangle (however an unattached 14cm has to be given the benefit of the doubt and be awarded M1A1).
$\operatorname{Cos} x=\frac{14}{32}$	\checkmark	M1	FT 'their stated or shown length BD'. FT has to use 'their BD' (not CD).
$\begin{array}{r} x=\cos ^{-1} 0.4375 \\ x=64\left(^{\circ}\right) \end{array}$	\checkmark \checkmark	$\begin{gathered} \text { m1 } \\ \text { A1 } \end{gathered}$	Accept answer rounded or truncated. [e.g. if their $\mathrm{BD}=7$, then accept $77\left(\cdot 36 \ldots{ }^{\circ}\right)$]
Organisation and Communication.	\checkmark	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical
Accuracy of writing.	\checkmark	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

GCSE MATHEMATICS Unit 2: Higher tier Summer 2017			\checkmark	Mark

GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017	\checkmark	Mark	MARK SCHEME Comments
$\begin{aligned} & 14 \\ & (\text { Greatest area }=) \\ & \begin{array}{r} 31.5 \times 23.5-20.5 \times 12.5 \\ (=740.25-256.25) \end{array} \\ & =484\left(\mathrm{~cm}^{2}\right) \end{aligned}$		M2 A1	Award M1 for correct use of values $31<1 \leq 31.5$, $23<w \leq 23.5,20.5 \leq 1<21,12.5 \leq w<13$. OR M1 for 31.5×23.5 - 'area of inner rectangle' OR M1 for 'area of outer rectangle' -20.5×12.5 CAO Alternative examples for method marks (adding up split areas of the shaded region). 1. Horizontal split $\begin{array}{ll}2 \times 31.5 \times 5.5+2 \times 12.5 \times 5.5, & M 2 \\ \text { OR } \\ \text { 2. Vertical split } \\ 2 \times 23.5 \times 5.5+2 \times 20.5 \times 5.5, & M 2\end{array}$ Award M1 for correct use of values $31<1 \leq 31.5$, $23<w \leq 23.5,20.5 \leq 1<21,12.5 \leq w<13$ and 'their 5.5 , adjusted accordingly to their values. Note that the 'shaded width' need not be consistent around the inner rectangle.
15. Enlargement with scale factor $-\underline{1} 22$ and centre (7,4)		B3	Penalise -1 for further incorrect steps. Award B2 for reference to any two of 'Enlargement',,$-1 / 2$ ' and 'centre $(7,4)$ ' either identified by coordinates or joining corresponding vertices on the grid. Award B1 for reference to any one of 'Enlargement',,$-1 / 2$ ' and 'centre $(7,4)$ ' either identified by coordinates or joining corresponding vertices on the grid. SC2 awarded for the correct two step transformation from shape A to B, e.g. enlargement SF $1 / 2$ centre origin, rotation 180° about $(5.25,3)$ or enlargement $\operatorname{SF} 1 / 2$ and 180° rotation, (both) with centre (7.4).
16.(a) $(0.8)^{3} \quad$ or equivalent $=0.512$ or equivalent		$\begin{gathered} \text { M1 } \\ \Delta 1 \end{gathered}$	Allow 80(\%) ${ }^{3}$ Fractional answer: 64/125 (ISW)
16.(b) $2 \times(0.8)^{2} \times 0.2$ OR equivalent $=0.256$ or equivalent		$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	M1 for sight of $0.8^{2} \times 0.2$ or for sight of 0.128 . Fractional answer: 32/125 (ISW)

\begin{tabular}{|c|c|c|c|}
\hline GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017 \& \checkmark \& Mark \& MARK SCHEME Comments

\hline 17.
$$
-(\sqrt[3]{w})^{5} \quad-\frac{3}{5} w \quad-(\sqrt[5]{w})^{3} \quad \frac{1}{\frac{(\sqrt[5]{w})^{3}}{}} \frac{1}{(\sqrt[3]{w})^{5}}
$$ \& \& B1 \&

\hline $$
\begin{aligned}
& \text { 18. } x(5 x-3)=7 \text { OR } 7=x(5 x-3) \text { OR } \\
& 5 x^{2}-3 x-7=0 \quad 5 x^{2}-3 x=7 \text { OR } 7=5 x^{2}-3 x \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 5 \times(-7)}}{2 \times 5} \\
& =(3 \pm \sqrt{ } 149) / 10 \\
& x=1.52 \text { with } x=-0.92 \quad \text { (answers to } 2 \mathrm{dp})
\end{aligned}
$$ \& \checkmark
\checkmark
\checkmark

\checkmark
\checkmark

\checkmark \& | M1 A1 |
| :--- |
| M1 |
| A1 |
| A1 | \& | ' $=0$ ' required, but may be implied by an attempt to use the quadratic formula or if $a=5, b=-3$, $c=-7$ used in the quadratic formula. |
| :--- |
| FT 'their quadratic equation' of equivalent difficulty (3 terms with at least one negative term). |
| Allow one slip in substitution, but must be correct formula. |
| CAO for their quadratic equation. |
| If none of the last 3 marks awarded for solving the given equation or the correct quadratic (irrespective if any of the opening two marks awarded), and trial and improvement used, then award: |
| SC3 for both correct solutions given, correct to 2 decimal places: $x=1.52$ with $x=-0.92$, OR |
| SC2 for both correct solutions given, but correct to 3 (or more) decimal places: $x=1.520(6 \ldots) \text { with } x=-0.920(6 \ldots)$ |
| Note: no marks to be awarded for 1 correct solution from trial and improvement. |

\hline \[
$$
\begin{aligned}
& \text { 19.(a) Appropriate example: } \\
& \text { E.g. } \pi \times \pi=\pi^{2}, \\
& (1+\sqrt{3})^{2}=4+2 \sqrt{3} \\
& (\sqrt[3]{2})^{2}=\sqrt[3]{4} \text { OR } 2^{\frac{2}{3}}
\end{aligned}
$$

\] \& \& B1 \& | The following can be applied if sight of π in the working lines or answer space: |
| :--- |
| If π or $3.141 \ldots$ (with or without the '...') used AND either π^{2} or $9.8696 \ldots$ (with or without the '...') seen in the answer space, this will gain the B1. |
| However, watch out for π seen, and e.g. 3.141 and 9.8658 offered in the answer spaces. This gains B0 because 3.141^{2} has been evaluated (not π^{2}). |

\hline | 19.(b) Two different irrational numbers and the correct rational number as the answer. |
| :--- |
| Examples: |
| $\sqrt{2} \times \sqrt{8}=\sqrt{16}$ (or simplified to 4) |
| $\sqrt{12} \times \frac{1}{\sqrt{3}}=\frac{\sqrt{12}}{\sqrt{3}}$ (or simplified to 2) |
| $\pi \times \frac{1}{\pi}=1$ |
| $2^{\frac{1}{2}} \times 2^{\frac{3}{2}}=2^{2}$ (answer can be simplified to 4) | \& \& B1 \& Answers in the boxes take precedence.

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017 \& \(\checkmark\) \& Mark \& MARK SCHEME Comments \\
\hline 20. \& \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1
\end{tabular} \& \\
\hline 21. Attempt to find the base diagonal ['Their face diagonal'] \({ }^{2}+\) ''Their edge \(\left.^{\prime}\right]^{2}=20^{2}\)
\[
x^{2}+x^{2}+x^{2}=400 \text { OR } 3 x^{2}=400 \text { OR }
\] \(x^{2}=400 / 3\) OR equivalent.
\[
x=\sqrt{ }(400 / 3) \text { OR } 11.5(4700538 \ldots \mathrm{~cm})
\] \& \(\checkmark\)
\(\checkmark\)

\checkmark
\checkmark

\checkmark \& | S1 |
| :--- |
| B1 |
| M1 |
| A1 | \& | e.g. diagonal ${ }^{2}=x^{2}+x^{2}$ or $x^{2}+x^{2}=2 x^{2}$. |
| :--- |
| Clear attempt at connecting their indicated face diagonal and edge of cube with the internal diagonal. |
| This mark implies S1. |
| Correct equation connecting edges and internal diagonal. |
| This mark implies S1 B1. |
| CAO |
| SC2 for an answer of 11.5(..cm) from a correct trial and improvement method, |
| OR |
| SC2 for an unsupported 11.5(...cm) |
| SC1 for two correct evaluations of $11 \leq x \leq 12$ from a correct trial and improvement method with one <400 and one >400. |

\hline
\end{tabular}

