Surname
Other Names

Centre Number	Candidate Number

GCSE - NEW
 3310U50-1

 MATHEMATICS - NUMERACY

 MATHEMATICS - NUMERACY

 UNIT 1: NON-CALCULATOR

 UNIT 1: NON-CALCULATOR

 HIGHER TIER

 HIGHER TIER}|| ||| ||
S17-3310U50-1

THURSDAY, 25 MAY 2017 - MORNING

1 hour 45 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.
Take π as $3 \cdot 14$.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 1(b), the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	9	
2.	3	
3.	5	
4.	4	
5.	6	
6.	6	
7.	8	
8.	5	
9.	11	
10.	13	
11.	10	
Total	80	

Formula List - Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^{n}-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

TURN OVER

Bryn receives $£$
Sophie receives $£$
(b) In this part of the question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

The talent contest is held once a year.
Every year, the cost of putting on the talent contest increases by 10% of the previous year's cost.
In summer 2014 the cost was $£ 6600$.
Calculate the cost of putting on the summer 2017 talent contest. You must show all your working.
2. A survey was carried out to find how much time a group of 16 -year-old students and a group of 18-year-old students spent using social media.
The frequency polygons below, which use equal time intervals, illustrate the results.
16-year-old students

18-year-old students
Frequency

true?

3. Bethan builds a rectangular sheep pen.

(a) The perimeter fence of the sheep pen is 18 m long.

The length of Bethan's sheep pen is two times its width.
Find the length and width of this sheep pen.
You must show your working.

Length is
metres
Width is \qquad metres
(b) Bethan decides to build a new sheep pen.

Examiner

The perimeter fence of the new sheep pen is 16 m long.
The length of the new sheep pen is 3 metres longer than the width.
Form an equation and solve it to find the dimensions of this new sheep pen.

Length is
metres
Width is \qquad metres
4. Josef has a job in a workshop that makes decorations.

He has made the following three decorations using small squares of stained glass.

P1

P2

Josef labels these patterns P1, P2 and P3 in order.
Josef continues to make decorations following the pattern he has started.
(a) How many more squares would he need to make pattern P22 than to make pattern P18?
(b) Josef has 22 squares.

Josef states,
'I think I can make one complete decoration using all 22 squares, with none left over.'

Is Josef correct?

Give a reason for your answer.
(c) Each small square of stained glass measures 0.5 cm by 0.5 cm .

The perimeter of one of Josef's decorations is 10 cm .
Complete the label that Josef would use for this decoration.
P
5. Cambria Airlines has planes that can carry up to 70 passengers.

For safety, the crew practise the emergency exit procedures with a group of 70 passengers.
Every 10 seconds the safety officer records the total number of passengers who have left the plane.
He has displayed the results in the cumulative frequency diagram shown below.

Cumulative frequency

(a) Estimate the median time taken by the passengers to leave the plane.
(b) How many passengers took more than 50 seconds to leave the plane? Circle your answer.
10
20
30
40
50
(c) Cambria Airlines has a policy that states the following.
'In the event of an emergency exit procedure, at least 90% of the 70 passengers must have left the plane within 1 minute.'

Did the practice emergency exit procedure meet the requirements of the airline's policy? You must show all your working.
6. The following box and whisker plots show the flow of water through a drain, measured in $\mathrm{m}^{3} / \mathrm{s}$. The flow of water was measured at 11 a.m. each day for the first 5 months of the year.

(a) In which of the five months was the median flow of water the greatest?
(b) In which of the five months was the range of the flow of water the greatest?
\qquad
(c) Iona is writing some statements for a report on the flow of water through the drain. Complete each of the statements given below.
(i) 'Both the upper quartiles and medians in the months of and .. were the same.'
(ii) ' 25% of the results in March show the flow of water was greater than

$$
\mathrm{m}^{3} / \mathrm{s} .
$$

(d) Circle either TRUE or FALSE for each of the following statements.

25% of the results in January show the flow of water was less than $6 \mathrm{~m}^{3} / \mathrm{s}$.	TRUE	FALSE
The units, $\mathrm{m}^{3} / \mathrm{s}$, measure the volume of water passing through the drain each second.	TRUE	FALSE
The mean flow of water in April was certainly greater than $36 \mathrm{~m}^{3} / \mathrm{s}$.	TRUE	FALSE
The month with the greatest difference between the lower quartile and the median was May.	TRUE	FALSE

\qquad
7. (a) A standard piece of A4 paper is usually 0.08 mm thick.

What is 0.08 mm written in metres in standard form?
Circle your answer.
8×10^{4}
8×10^{-4}
8×10^{-3}
8×10^{3}
8×10^{-5}
(b) A piece of card is 1 mm thick.

A stack of these pieces of card is 3×10^{-2} metres high.
(i) Calculate how many pieces of card there are in the stack.
(ii) What assumption have you made in answering (b)(i)?
\qquad
\qquad
(c) In 2012 it was recorded that

- the total mass of the paper used for printing newspapers, in the world, was 2.88×10^{7} tonnes,
- the world population was approximately 7.2×10^{9} people.

Use this information to calculate the mass of paper per person used to print newspapers in 2012.
Give your answer in $\mathbf{k g}$ per person.

Mass of paper:
kg per person
8. On a new housing estate, teams of painters paint the walls and ceilings of houses once they are built.
(a) It takes a team of 5 painters 10 hours to paint a house that has a total wall and ceiling area of $500 \mathrm{~m}^{2}$.

A new house on the estate has a total wall and ceiling area of $600 \mathrm{~m}^{2}$.
This house has to be painted in 8 hours.
Calculate the least number of painters needed.
You must show all your working.
(b) What assumption have you made in answering part (a)?

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

TURN OVER

9. The time taken to run 400 m was recorded for each member of a running club.
(a) A histogram of the results for the members who are under 30 years of age is shown below.

Frequency density

(i) Calculate how many members of the running club are under 30 years of age. [2]
\qquad
\qquad
(ii) Calculate an estimate of the median time taken by the under-30s to run 400 m . [4]
\qquad
\qquad
\qquad
\qquad

10. The graph below shows a 120 -second section of lestyn's car journey to work this morning.

Speed (metres per second)

(a) (i) At $t=50$ seconds, estimate the acceleration of lestyn's car in $\mathrm{m} / \mathrm{s}^{2}$. Leave your answer as a fraction.

(b) (i) Calculate an estimate of the distance travelled by lestyn's car in the first 80 seconds of his journey.
You must consider the speed of the car when $t=0,20,40,60$ and 80 seconds.

120 -second section of his car journey.
Give your answer in m/s.
11. The diagram below shows a wooden end-piece for a curtain pole. It is in the shape of a cone with measurements as shown in the diagram.

Diagram not drawn to scale
The curtain pole sits in a cylindrical hole that has been drilled into the end-piece. The hole is of radius 3 cm and depth 4 cm .
(a) Show that the volume of wood that remains is $64 \pi \mathrm{~cm}^{3}$.
(b) The surface area of the end-piece is to be painted, except for the area inside the hole. Calculate the surface area that is to be painted. Give your answer in terms of π.

END OF PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

$\begin{aligned} & \text { Question } \\ & \text { number } \end{aligned}$	Additional page, if required. Write the question number(s) in the left-hand margin.	$\int \begin{gathered} \text { Examiner } \\ \text { only } \end{gathered}$

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

