# шјес <br> cbac 

## GCSE MARKING SCHEME

AUTUMN 2016

MATHEMATICS - NUMERACY (NEW) UNIT 2 - HIGHER TIER<br>3310U60-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

| GCSE Mathematics - Numeracy Unit 2: Higher Tier Autumn 2016 | Mark | Comment |
| :---: | :---: | :---: |
| 1(a) $\quad y=5 b / 6 x$ | B1 |  |
| 1(b) $2.6 \times 33.6 / 2.1$ or $2.6 \times 16 \quad 41.6$ (cm) | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$ | CAO <br> Award M1, AO for an answer of 40.32 from $P A(33.6 \times 1.2=40.32)$ |
| 2. $34 \times 0.98^{2} \times 1.06^{5}$ <br> Answer in the range (£)43.67 to (£)43.7(0) | M2 <br> A1 | OR equivalent method to decrease by $2 \%$ and to increase by $6 \%$ on different amounts $\left(34 \times 0.98^{2}=32.6536\right)$ $\left(34 \times 1.06^{5}=45.4996 \ldots\right)$ <br> M1 for sight of either $\times 0.98^{2}$ or $\times 1.06^{5}$ or equivalent calculations <br> CAO, from correct working |
| ```3(a) (diagonal }\mp@subsup{}{}{2}=)3.\mp@subsup{3}{}{2}+3.\mp@subsup{3}{}{2 diagonal }\mp@subsup{}{}{2}=21.78\mathrm{ or diagonal }=\sqrt{}{}21.7 diagonal is }4.7\mathrm{ (cm)``` | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | Scale drawings are not accepted in Q3 <br> FT from M1 for the correctly evaluated square root of 'their 21.78' provided 'their answer' > 3.3 (cm) Must be to 1 d.p. <br> Accept an unsupported 4.7(cm) |
|  | M2 | FT for 'their derived diagonal', but not 3.3 cm M1 for sight of either $11 \times 4.6(669 \ldots$...) or $9.5 \times 4.6(669 \ldots$..) <br> (Height 44.3355... cm; width 51.3359...cm) <br> Accept answers in the range $2211\left(\mathrm{~cm}^{2}\right)$ to $2308.41\left(\mathrm{~cm}^{2}\right)$ from appropriate working <br> (Note: e.g. use of a diagonal such as 5.27(cm) allow appropriate calculation with 5.2 (cm) or 5.3 (cm) for M2, A1; however use of 5 throughout is a possible M2, AO) |


| GCSE Mathematics - Numeracy Unit 2: Higher Tier Autumn 2016 | Mark | Comment |
| :---: | :---: | :---: |
| 4(a) Sight of 31.2 and 3 or 180 | B1 |  |
| $\begin{gathered} \frac{31.2}{3} \\ (9.6 \mathrm{~km} / \mathrm{h}=) 0.16(\mathrm{~km} / \mathrm{min}) \text { with } \frac{31.2}{180} \end{gathered}$ | M2 | Allow 31.2/7 $\div 3 / 7$ <br> FT 'their total distance' <br> 'their total time in hours' <br> M1 for 'their total distance' 'their total time in minutes' allow $31.2 / 7 \div 180 / 7$ |
| 10.4 (km/h) OR 0.17 (3.. $\mathrm{km} / \mathrm{min})$ | A1 | FT from 1 arithmetic error in calculating either 31.2 or 3, i.e. one of these values needs to be correct <br> Do not FT from denominator in minutes unless $0.16(\mathrm{~km} / \mathrm{min})$ seen <br> Allow a final answer from a correct method that rounds to 10.4, e.g. 10.3(54..km/h) from PA <br> (Note: 3 $\begin{aligned} 31.2 \div 7 & =4.45714 \ldots \\ 3 \div 7 & =0.42857 \ldots \\ 180 \div 7 & =25.71428 \ldots) \end{aligned}$ <br> If no marks so far, allow SC1 for evaluating 'a distance $\div$ time in hours' correctly (Sun to Sat : 10.615.., 10.45, 11, 10.6286, 10.8, 9.4286, 9.2727...) |
| \% improvement $100 \times(10.4-9.6) \div 9.6$ or $100 \times 10.4 \div 9.6-100$ or equivalent | M1 | FT 'their 10.4' provided it is >9.6 OR FT 'their 0.17 (3...)' provided it is $>0.16$ |
| 8(.333...\%) | A1 | (Note: use of $10.354 \ldots$ leads to $7.85 \%$ ) <br> If previously MO, AO for \% improvement, allow SC1 for an answer of 108\%, or similar from FT |
| Organisation and communication | OC1 | For OC1, candidates will be expected to: <br> - present their response in a structured way <br> - explain to the reader what they are doing at each step of their response <br> - lay out their explanations and working in a way that is clear and logical <br> - write a conclusion that draws together their results and explains what their answer means |
| Writing | W1 | For W1, candidates will be expected to: <br> - show all their working <br> - make few, if any, errors in spelling, <br> punctuation and grammar <br> - use correct mathematical form in their working <br> - use appropriate terminology, units, etc. |


| GCSE Mathematics - Numeracy Unit 2: Higher Tier Autumn 2016 | Mark | Comment |
| :---: | :---: | :---: |
| 4(b) $\tan$ elevation $=\frac{200}{1600}$ or equivalent <br> Angle of elevation is $7\left(.125 \ldots .{ }^{\circ}\right)$ | M1 <br> A2 | A1 for $\tan ^{-1} 0.125$ or $\tan ^{-1}(200 / 1600)$ |
| $4(\mathrm{c})(\mathrm{i}) \text { run }=\frac{300}{\sin 10^{\circ}}$ $1727(.631 \ldots \mathrm{~m}) \text { or } 1728(\mathrm{~m})$ <br> Assumption, e.g. 'road is straight', 'used a rightangled triangle', 'the road is smooth', 'Gwenda runs in a straight line' | M2 A1 E1 | M1 for $\sin 10^{\circ}=300 /$ run <br> ISW <br> Accept reasonable estimates (rounding or truncation) following correct working, e.g. $1700,1730,1750$ <br> Depends on a previous attempt to use rightangled triangle trigonometry or Pythagoras' theorem <br> Accept 'Gwenda doesn't zigzag up the hill' |
| 4(c)(ii) Impact, e.g. 'run could be longer', 'it is an under estimate', 'bumps could make it longer' | E1 | Independent of (c)(i) <br> Allow 'it is inaccurate' <br> Do not accept 'shorter' alone However, accept 'shorter than the actual length' |
| 5(a)(i) Mid points : $\quad 1.5,3,4.5,7$ $\begin{gathered} 1.5 \times 2+3 \times 6+\underset{(=3+18+36+28}{4.5 \times 8+7 \times 4}) \\ 4.25 \text { (microns) } \div 20 \end{gathered}$ | B1 <br> M1 <br> m1 <br> A1 | FT 'their mid points' provided each one lies within the appropriate group, including bounds <br> Accept 4.3 from correct working, i.e. $85 \div 20$ seen in working <br> Do not accept 4.2 unless 4.25 or $85 \div 20$ seen in working |
| 5(a)(ii) 45 dust particles means $3 \times 7: 3 \times 8$ 21 : 24 or 21 in total equivalent <br> (A further) 13 (dust particles) | $\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$ | Accept $7 \times 45 /(7+8): 8 \times 45 /(7+8)$ <br> Allow M1, m1, A0 for sight of $8+13=21$ <br> Alternative: <br> Trial \& improvement, e.g. <br> $18: 27$ (is $2: 3$ incorrect) <br> 19: 26 (incorrect) <br> $20: 25$ (is 4 : 5 incorrect) <br> 21 : 24 (is 7 : 8 correct!!) <br> M1 for sight from the above list: a trial with correct simplification shown AND <br> --- either for a second trial with correct simplification shown --- or the second trial has clearly been dismissed <br> m1 Selection of 21 : 24 <br> A1 (a further) 13 (dust particles) |

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \text { GCSE Mathematics - Numeracy } \\
\& \text { Unit 2: Higher Tier } \\
\& \text { Autumn } 2016
\end{aligned}
\] \& Mark \& Comment \\
\hline \begin{tabular}{l}
5(b) (Circumference) \(5=2 \times \pi \times r\) or \(5=\pi \times d\) Radius of the cylinder \(\underline{5}\) \\
Volume \(\quad \pi \times(5 / 2 \pi)^{2} \times 2\) \\
4 (microns \(^{3}\) )
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A2
\end{tabular} \& \begin{tabular}{l}
\[
(5 / 2 \pi=0.79577 \ldots)
\] \\
FT 'their r' provided M1 awarded provided 'their \(r\) ' \(=5 / \pi\) A1 for \(25 / 2\) т or \(3.9(\ldots)\) or 4.0 (microns \(^{3}\) )
\end{tabular} \\
\hline ```
6(a)(Total =) 640
75\times(number of staff in a job type) }\div64
(List of unrounded answers =)
(Number in sample =) 14, 37, 7, 17
14.0625, 37.5, 6.5625, 16.875
``` \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Sight of this calculation for any one job type FT 'their total' \\
Allow A1 for any 2 correct
CAO
\end{tabular} \\
\hline \begin{tabular}{l}
6(b) \\
'Each doctor is given a 3-digit number from 001 \\
to \(120^{\prime}\) \\
'Use the table to select numbers in the range (1 to 120), ignoring repeats' \\
(Working in rows would produce) 032, 021, 081, 032, 055, 105 \\
(Working in columns would produce) 032, 055, 021, 032, 119, 081
\end{tabular} \& B1
B1

B1 \& | Or any 120 different numbers OR |
| :--- |
| Each doctor is given a number from 1 to 120, and the random numbers are then partitioned in groups of 3 |
| If they are not working in rows or columns, they need to explain how they are working (Note: the numbers have to be used one at a time) |
| Alternative: |
| B1 for 'the 3-digit number is divided by 120 with the remainder used, a remainder of zero means that doctor 120 is chosen, ignore the numbers 000 and 961 - 999 and repeats, OR 960-999, and repeats' |
| B1 for (working in rows would produce) 032, 040, 021, 084, 032, $027 \quad O R$ (working in columns would produce) 032, 062, 117, 055, 062, 040 | <br>

\hline $$
\begin{aligned}
& \text { 7. Sight of } 65500000 \text { or equivalent } \\
& \text { Sight of } 243500 \\
& 65500000 \div 243500 \\
& =268(\cdot 993 \ldots) \text { or } 269 \text { (population } / \mathrm{km}^{2} \text { ) }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Allow use of 65499999 or equivalent throughout |
| :--- |
| Accept 270 from correct working | <br>

\hline
\end{tabular}

| GCSE Mathematics - Numeracy <br> Unit 2: Higher Tier <br> Autumn 2016 | Mark | Comment |
| :--- | :--- | :--- |

\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Numeracy Unit 2: Higher Tier Autumn 2016 \& Mark \& Comment \\
\hline 10(a)(i) 0.0198 \& B1 \& \\
\hline \begin{tabular}{l}
10a(ii) Banc Padarn \\
For use of \(\mathrm{n}=12\)
\[
\begin{aligned}
(A E R=) \& (1+0.0198 / 12)^{12}-1 \\
\& =0.01998(0 \ldots) \text { OR } 1.998(0 \ldots) \%
\end{aligned}
\] \\
Banc Padarn's savings account would give most interest per annum.
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
E1
\end{tabular} \& \begin{tabular}{l}
FT 'their 0.0198 ' for M1 only \\
Allow 0.02(00..) OR 2(.00) \% \\
Do not accept 0.01998 \% or 0.02(00..) \% \\
FT 'their AER for Banc Padarn' provided at least M1 awarded AND they are comparing like percentages or decimals \\
Alternative method: \\
B1 for monthly interest rate of 0.00165 M1 for the method of calculating the value of an investment for Banc Padarn after a year (initial investment \(\times 1.00165^{12}\) ) and Banc Teilo (initial investment \(\times 1.0199\) ) \\
A1 for accurate values for both banks (with appropriate rounding) \\
E1 for Banc Padarn chosen
\end{tabular} \\
\hline 10(b)(i) 0.00165 \& B1 \& \\
\hline \begin{tabular}{l}
10(b)(ii) \\
( \(3{ }^{\text {st }}\) May OR \(1^{\text {st }}\) June) \\
(Interest \(=\) ) ( \(0.00165 \times 150\) 000) (£)247.5(0) \\
( \(30^{\text {th }}\) June OR \(1^{\text {st }}\) July) \\
(Interest =) \\
(0.00165 \(\times 150247.5(0)\) ) \\
(£)247.90(84) \\
OR Total interest of (£)495.40(84) \\
( \(31^{\text {st }}\) July OR \(1^{\text {st }}\) August) \\
(Interest \(=\) ) \\
(0.00165 \(\times 150495.40(84)\) ) \\
(£)248.31(74) \\
OR Total interest of (£)743.72(58) \\
\((\) Tax to pay \(=)(\) 'their \(743.72(58)\) ' -500\() \times 0.4\) \\
\(31^{\text {st }}\) July OR \(1^{\text {st }}\) August AND (£)97.49(032)
\end{tabular} \& B1
B1

B1

B1 \& | FT 'their 247.5(0)' |
| :--- |
| FT 'their 247.90(84)' |
| Alternative method: |
| B1 for ( $1.00165 \times 150000$ ( ( $) 150247.5(0)$ |
| B1 for ( $1.00165^{2} \times 150000$ ) (£) $150495.40(84)$ |
| This B1 implies the $1^{\text {st }}$ B1 |
| B1 for ( $1.00165^{3} \times 150000$ (£) $150743.72(58)$ |
| The last B1 implies the previous two B1 marks |
| FT 'their 743.72(58)' provided compound interest attempted |
| Allow 'End of July' OR ' $30^{\text {th }}$ July' for the date Allow ( $£$ ) 97.48 from rounding down of the monthly interest payments | <br>

\hline
\end{tabular}

GCSE Mathematics - Numeracy (New) Unit 2 Higher MS November 2016/ED

