шјес
 cbac

GCSE MARKING SCHEME

AUTUMN 2016

MATHEMATICS (NEW)
UNIT 1 - HIGHER TIER
3300U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

	GCSE MATHEMATICS Unit 1 : Higher Tier Autumn 2016	\checkmark	Mark	Comment
1.(a)	12		B1	
1.(b)	$\frac{1}{12}$		B1	F.T. 1/their (a)'
1.(c)	$\frac{1}{6}$		B1	
2.(a)	$6 \quad-3$		B2	B1 for each.
2.(b)	7 correct plots. Curve drawn.		$\begin{aligned} & \text { P1 } \\ & \text { C1 } \end{aligned}$	Use overlay. F.T. 'their $(-1,6)$ ' and 'their $(2,-3)$ '. Allow $\pm 1 / 2$ a small square'. F.T. 'their plots'. At least 6 plots required. Clear intention to draw a curve through 'their plotted points'.
2.(c)	-0.9 and 3.4		B2	B1 for each. Allow $(-0 \cdot 9,5)$ and $(3 \cdot 4,5)$. F.T. intersection of 'their curve' with $y=5$ provided exactly 2 intersections seen on graph. Allow $\pm 1 / 2$ a small square'. If no marks gained then SC1 for either of the following. $y=5$ drawn correctly, OR Two correct F.T. values given for 'their straight line' and 'their curve' provided exactly 2 intersections seen on graph.
2.(d)	$2 x^{2}-5 x-6=0$		B1	
3.(a)	$\frac{360}{45} \quad=8 \text { (sides) }$		M1 A1	For a clear intention of finding how many 45 s in 360. Accept embedded answer e.g. 360/8 $=45$ or $45 \times 8=360$ for M1A1.
3.(b)	Correct construction of 90°. Correct bisector of 90°. $\mathrm{AB}=7 \mathrm{~cm} \quad \mathrm{AND} \quad \mathrm{BC}=7 \mathrm{~cm}$		B2	Do not penalise if they use their own point A. Use overlay but arcs required for the 3 'angle marks'. With sight of accurate 'method arcs'. For this B 2 the construction need not be at point B . (Final B1 will not then be awarded) B1 for sight of 'method arcs' but perpendicular line not drawn (unless intersection of construction arcs for 90° are correctly used to construct the 45° angle. In this case the B2 and B1 are gained). With sight of accurate 'method arcs'. F.T. 'their 90° '. Allow $\pm 0.2 \mathrm{~cm}$. Do not penalise if the line $A B$ is extended as long as the position of point B is unambiguous. (Allow labelling of points B and C to be missing if end points are unambiguously identifiable.) If all marks gained but angle $A B C=45^{\circ}$, penalise -1 .

GCSE MATHEMATICS Unit 1 : Higher Tier Autumn 2016	\checkmark	Mark	Comment
4. (a) $6 m=y-7$ or $y-7=6 m$ or $-6 m=7-y$ $m=\frac{y-7}{6}$ or $m=\frac{7-y}{-6} \quad$ or $m=(y-7) \div 6$		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	F.T. only from $6 m=y+7$. B1B0 for $-m=\frac{7-y}{6}$ or equivalent. Note Unsupported $m=y-7 \div 6$ is BOBO . Unsupported $\frac{y-7}{6}$ is B1BO (' m ' missing)
4.(b) $6 x(x-2)$		B2	B1 for any partial correct factorisation. OR B1 for $6 x(x-\ldots)$ OR B1 for $6 x(\ldots-2)$
5.(a) 1.5×10^{3}		B2	If B2 not awarded, B1 for sight of 1500 OR B1 for 1.5×10^{n} from a denominator of 5×10^{3} seen OR B1 for $a \times 10^{3}$ with $1 \leq a<10$ from a denominator of 5×10^{3} seen.
5.(b) $\quad 6.63 \times 10^{4}$		B2	B1 for $6.6(\ldots.) \times 10^{4}$. B1 for any correct value but not in standard form
6. (Perimeter of square $=) 4 \times(2 x+3 y)=62$ (Perimeter of octagon $=) 8 \times(x+2 y)=72$	\checkmark \checkmark	B1 B1	Sight of $8 x+12 y=62$ or equivalent e.g. $2 x+3 y=15 \cdot 5$ Sight of $8 x+16 y=72$ or equivalent e.g. $x+2 y=9$
Correct method to solve simultaneous equations, as far as attempt at subtraction	\checkmark	M1	F.T. 'their equations'. Allow 1 'slip', if multiplication used, but not in 'equated variable' for M1 only.
$\begin{aligned} & y=2 \cdot 5 \\ & x=4 \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	F.T. from their $1^{\text {st }}$ variable. (Substitution in any relevant equation.)
Organisation and Communication.	\checkmark	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical
Accuracy of writing.	\checkmark	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

GCSE MATHEMATICS Unit 1 : Higher Tier Autumn 2016	\checkmark	Mark	Comment
12. $3 x(2 x+7)-2 x(3 x+2)$ as a numerator within a single fraction $(3 x+2)(2 x+7)$ as a denominator. $17 x /(3 x+2)(2 x+7)$		M1 M1 A1	Accept intention of brackets when working not shown e.g. $6 x^{2}+21 x-6 x^{2}+4 x$. C.A.O. If M1M1A1 awarded penalise further incorrect work -1 . If no marks awarded then SC1 for sight of $17 x$.
13. $\mathrm{RPQ}=x$ (Reason =) Alternate segment (theorem) $\mathrm{PQR}=90-x$ (Reason =) Angle in a semicircle is 90° (and angles in a triangle add up to 180°)	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \\ & \\ & \text { B1 } \\ & \text { E1 } \end{aligned}$	Check diagram. Dependent on B1. F.T. 90 - 'their RPQ'.
14. (a) $2 x^{2}+x+1=7$ OR $x^{2}+x^{2}+x+1=7$ leading to $2 x^{2}+x-6=0$		B1	Must be seen. Accept $1(x+1)$ for $\mathrm{x}+1$.
14.(b) $\quad(2 x-3)(x+2)(=0)$ (Length of each side $=$) 1.5 (metres)	$\checkmark \checkmark$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for $(2 x \ldots .3)(x \ldots . .2)$ F.T. from 'their two brackets'. (If both F.T. solutions are of the same sign, then both are required for this B1.) Ignore presence of $x=-2$. $\frac{\text { Using quadratic formula. }}{(x=) \frac{\left.-1 \pm \sqrt{ } / 1^{2}-4(2)(-6)\right]}{2(2)}} \quad \text { M1 }$ Allow one error, in sign or substitution, but not in the formula. $\begin{array}{cc} = & \frac{-1 \pm \sqrt{ } 49}{4} \\ x=1 \cdot 5 \text { (metres) [ignore } x=-2] & A 1 \end{array}$ Using trial and improvement Award B3 for a method leading to both solutions, namely $x=1.5$ and $x=-2$, otherwise $B 0$.
Statement about ignoring $x=-2$ as would be a negative length.	\checkmark	E1	F.T provided one solution is positive and the other is negative.

GCSE MATHEMATICS Unit 1 : Higher Tier Autumn 2016	\checkmark	Mark	Comment
15.(a) Concave down curve with y-coordinate of maximum $=7$ x-coordinate of maximum $=5$ Points $(2,0)$ AND $(8,0)$ shown.		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow appropriate marking of axes if coordinates not given.
15.(b) Cosine curve Correct cosine curve with 2 shown on the y-axis and 180° and 360° shown or implied.		M1 A1	Intention to sketch a portion of a cosine curve with minimum period of 360°.
16. $A B=A C$ because $A B C$ is an isosceles triangle. $A P=A Q \quad A N D$ angle Â common. (So triangles ABQ and ACP are congruent because of) 'two sides and the included angle' or 'SAS'.	$\checkmark v$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	B 1 for $A B=A C$ alone.
17. $\begin{aligned} & (5 \sqrt{ } 3)^{2}=25 \times 3 \quad(=75) \\ & \frac{2 \sqrt{ } 18}{\sqrt{ } 2}=2 \times \sqrt{ } 9 \quad(=2 \times 3=6) \\ & \sqrt{ } 32 \times \sqrt{ } 2=\sqrt{ } 64(=8) \end{aligned}$ (Answer =) 69/8 or equivalent.	\checkmark \checkmark \checkmark \checkmark	B1 B1 B1 B1 B1	For first three marks, accept a correct product of integers in each case, e.g. $2 \times 2 \times 2$ (=8). C.A.O. Equivalent answer must be simplified. So B0 for $(75-6) / 8$. ISW. F.T. 'their final answer' provided at least 2 out of first 3 B1s are awarded.
$\begin{aligned} & \text { 18. (Probability success at } \left.1^{\text {st }} \text { attempt }=0.8\right) \\ & \begin{aligned} \text { (Probability } 1^{\text {st }} \text { success at } 2^{\text {nd }} \text { attempt } & =0.2 \times 0.8 \\ & =0.16 \end{aligned} \end{aligned}$ Convincing statement that $0.8=5 \times 0.16$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Must show 0.2×0.8 for M1. A convincing statement must refer to 0.8 and 0.16 Alternative method (Probability $1^{\text {st }}$ success at $2^{\text {nd }}$ attempt $=$) $\begin{equation*} 0.2 \times 0.8 \tag{M1} \end{equation*}$ Indicates that this is $1 / 5^{\text {th }}$ of probability of success at $1^{\text {st }}$ attempt. 'So 5 times more likely to succeed $1^{\text {st t time. }}$ (Only convincing if 0.2 stated to be $1 / 5$)

