GCSE MARKING SCHEME

AUTUMN 2016

MATHEMATICS (NEW)
UNIT 2 - INTERMEDIATE TIER
3300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS Unit 2 : Intermediate Tier Autumn 2016	\checkmark	Mark	Comment
9. (Diameter of circle $=) \quad 80 \div 4$ $=20(\mathrm{~cm})$	$\checkmark \checkmark$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	May be seen on the diagram as a side or a diameter. Radius (or ${ }^{1} 1 / 2$ a side') $=10$; stated, used or seen on the diagram implies M1A1.
$\begin{aligned} & (\text { Circumference }=) \begin{array}{r} \pi \times 20 \text { or } 2 \times \pi \times 10 \text { or equivalent } \\ \\ =62 \cdot 8(\mathrm{~cm}) \end{array} . \end{aligned}$	\checkmark \checkmark	M1 A1	F.T. 'their derived diameter (not 10 and not 80) or derived radius(not 20 and not 80). Must be given to 1 dp .
Organisation and Communication.	\checkmark	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical
Accuracy of writing.	\checkmark	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
10(a) $n+2$		B2	B1 for sight of $n \pm k$ where $k \neq 0$. Allow the n to be shown as $1 n$ or $n 1$ or n^{1} or $1 \times n$. Penalise use of any other letter (apart from N) -1 .
10.(b) (i) $\quad 8 \quad 8 \quad 11 \quad 16$		B2	B1 for two correct OR for 7, 8, 11. OR for 11, 16, 23.
10.(b) (ii) $\quad 9\left({ }^{\text {(h }}\right.$ term)		B2	B1 for sight of $n^{2}>78$ OR sight of 88 OR sight of $9^{2}+7$
11.(a) Correct reflection in $y=2$		B2	B1 for a correct reflection in $x=2 \quad$ OR B1 for sight of line $y=2$.
11.(b) Anticlockwise rotation of $\underline{0^{\circ}}$ about the origin.		B3	For all four components. Accept clockwise rotation of 270° about the origin. B2 for any three. B1 for any two. Treat ' $1 / 4$ turn' as one component. 'Origin' may be stated as $(0,0)$ or 0 or O . Allow e.g. 'in the origin', 'around the origin'.
11.(c) (i) Correct translation.		B1	
11.(c) (ii) $\quad\binom{5}{4}$		B1	BO for 5 (missing brackets) OR (5,4) B0 for $\frac{4}{5}$ with or without brackets.

GCSE MATHEMATICS Unit 2 : Intermediate Tier Autumn 2016	\checkmark	Mark	Comment
Ribbon marking for 15(a)(i) and 15(a)(ii). 15.(a) (i) 2		B1	Accept 12/6 or equivalent. The correct gradient has to be unambiguously shown. $y=2 x+4 \text { is BO. Allow e.g. } \mathrm{y}=2 x+4 \text { for B1. }$
Ribbon marking for 15(a)(i) and 15(a)(ii). 15.(a) (ii) $y=2 x+4$		B2	F.T. 'their gradient' from (a) only if a whole number. B1 for $y=2 x \pm k$. B1 for $y=\mathrm{k} x+4$. B1 for $2 x+4$ (' $y=$ ' missing)
15.(b) (Both have) equal gradients of 2.5 .		B2	Accept equivalent of 2.5 . Accept $y=2.5 x-1.5$ AND $y=2 \cdot 5 x+1.75$ for B2 unless a contradiction is seen. B1 for stating 'equal gradients' but not given as 2.5 . B1 for sight of $2 \cdot 5$, or equivalent, but no mention of gradient. Also Correctly rewriting the equation(s) such that they show equal corresponding x and y coefficients, e.g. $2 y=5 x-3$ and $2 y=5 x+3.5$ gains a B1. In this case they need to make a further statement to show an understanding of gradients to gain $2^{\text {nd }}$ B1.
16.(a)3000×0.05 or equivalent. $=150$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow 5\% of 3000 for the M1. C.A.O. SC1 for sight of $3000 \times 0.05(=150)$ within an incorrect solution. $\begin{aligned} & \text { e.g. } 1000 \times 0.03+2000 \times 0.042+\underline{3000 \times 0.05}+\ldots \\ & \quad(=30+84+\underline{150}+\ldots . .) \end{aligned}$
16.(b)0.048 or equivalent e.g. 4.8% or $240 / 5000$ Explanation e.g. 'all data used', 'last point plotted', 'the number of sockets tested was the highest'.		B1 B1	ISW from an answer given as a fraction. Accept any indication that the final reading should give the best estimate.

	GCSE MATHEMATICS Unit 2 : Intermediate Tier Autumn 2016	\checkmark	Mark	Comment
17.	$\begin{aligned} & \mathrm{BDC}=28\left({ }^{\circ}\right) \\ & \mathrm{BCD}=90\left({ }^{\circ}\right) \\ & \mathrm{BD}=\frac{4 \cdot 7}{\operatorname{Sin} 28} \\ & \mathrm{BD}=10(\cdot \ldots)(\mathrm{cm}) \end{aligned}$	\checkmark $\checkmark \checkmark$	B1 B1 M2 A1	Angles may be shown on the diagram. Allow D $=28$. May be implied in later work. (Allow this B1 for any use of a right-angle triangle trigonometric relationship for triangle BCD) This implies previous B mark. FT 'their BDC'. M1 for $4 \cdot 7=\sin 28$.
18.(a)	$\begin{aligned} & (x-6)(x+4) \\ & (x=) 6 \text { AND } \quad(x=)-4 \end{aligned}$		$\begin{aligned} & \hline \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for ($x \ldots 6$) ($x \ldots 4$). Strict F.T. from their brackets. Allow the following. $\begin{array}{\|lccc} \text { B2 for } & x-6(=0) & \text { AND } & x+4(=0) \\ & (x=) 6 & \text { AND } & (x=)-4 \\ \text { B1 for } & x+6(=0) & \text { AND } & x-4(=0) \\ & x=)-6 & \text { AND } & (x=) 4 \tag{B1} \end{array}$ B1 if only $(x=) 6$ AND $(x=)-4$ seen (B1)
18.(b)	$\begin{aligned} & \frac{12 x-9+7 x+1}{(6)}= \frac{87}{(6)} \\ & 19 x=95 \\ & x=5 \end{aligned}$	$\begin{gathered} \checkmark v \\ \checkmark \\ \checkmark \end{gathered}$	B2 B1 B1	F.T. until $2^{\text {nd }}$ error. B1 for 1 error. Subsequent work may show use of common denominator in order to award the B2. B0 for 95/19. If a F.T. answer is not a whole number then allow answer in form ' a / b '. Mark final answer. Allow a correct embedded answer.

