Do not write outside the box Answer all questions in the spaces provided (0.56 0.5 Circle the list of all the integers that satisfy -1,0,1,2,3,4[1 mark] -1, 0, 1, 2, 3 -2, -1, 0, 1, 2, 3 (-1, 0, 1, 2, 3, 4) -2, -1, 0, 1, 2, 3, 4 Circle the largest number. [1 mark] 3.207 3.27 3.277

Mallo Made Easy. CO. UK

	-	 1	1	
Centre number		Candidate number		
Surname				
2Dilliani.				

GCSE **MATHEMATICS**

For Examiner's Use

Pages Mark

2-3

4-5

6-7

10-11

12-13

14-15

16-17

18-19 20-21 22-23

TOTAL

Higher Tier

Paper 3 Calculator

Tuesday 12 June 2018

Morning

Time allowed: 1 hour 30 minutes

For this paper you must have: • a calculator

- · mathematical instruments.

- . Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- . The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

• In all calculations, show clearly how you work out your answer.

8300/3H

Do not ymia ouside the box

Not drawn accurately

54° W

B is an enlargement of A with scale factor 1.5

y 9cm

Work out the values of x, h and w.

A and B are similar shapes.

[3 marks]

Similar shapes angle always the same $S \times 1.5 = 75$

4

9 = 1.5 = 6

x = _____ degrees

h= 7.5 cm

w = 6 cm

What is the size of an exterior angle of a regular decagon?

Circle your answer.

10 36 18° 18° 38° 144° 162°

5 a is a common factor of 72 and 120
b is a common multiple of 6 and 9

Work out the highest possible value of $\frac{a}{b}$ C6 72 and 120
2, 3, 4, 6, 8, 12, 24

6 2 and 9

LCM 18, 36, S4 ...

Answer

Turn over for the next question

110.11	Do not use a graphical method. [3 marks]
)rau	y = 3x + 7 [3 marks]
	7- 32 11
	0 6 2 0111
	27-6x=8 Both Have greated
	+62 +62 00 3
	$\frac{2y = 6x + 8}{12}$
	÷2
	7= 3x +4
(b)	is the point $(-5, -6)$ above, below or on the line $y = 3x + 7$?
	Tick one box.
	Above Below On the line
	You must show your working.
	Do not use a graphical method.
	Do not use a graphical method. [2 marks]
	Do not use a graphical method.
	Do not use a graphical method. On the line? $-6 = -88 \cdot 8 \cdot -6 + 7$ $-6 = -15 + 7$
	Do not use a graphical method. On the line? $-6 = -36(x-6)+7$ $-6 = -15+7$ $9 = 7$ Not anthe
	Do not use a graphical method. [2 marks] On the line? $-6 = -8(8 \times -6) + 7$ $-6 = -15 + 7$ $9 = 7$ no indenth
	Do not use a graphical method. On the line? $-6 = -36(x-6)+7$ $-6 = -15+7$ $9 = 7$ Not anthe
	Do not use a graphical method. [2 marks] On the line? $-6 = -8(8 \times -6) + 7$ $-6 = -15 + 7$ $9 = 7$ no indenth
	Do not use a graphical method. On the line? $-6 = 38(x-6)+7$ $-6 = -18+7$ $9 = 7$ Not on the line above or below: $y = (3x-5)+7$ $y = 9$
	Do not use a graphical method. On the line? $-6 = 38(x-6)+7$ $-6 = -18+7$ $9 = 7$ Not on the line above or below: $y = (3x-5)+7$ $y = 9$
	Do not use a graphical method On the line? $-6 = -38(8 - 6) + 7$ $-6 = -15 + 7$ $9 = 7$ Not onthe line above or below: $y = (3x - 5) + 7$ $y = 9$ On the line and be $(-5, -8)$
	Do not use a graphical method. On the line? $-6 = 38(x-6)+7$ $-6 = -18+7$ $9 = 7$ Not on the line above or below: $y = (3x-5)+7$ $y = 9$

Investment A Save £150 per month for 2 years. 2.5% interest is added to the total amount saved.	
Investment B Invest £3500 Compound interest is added at 3% per year.	
After 2 years, how much more is investment B worth than investment A? [4 marks]	
A: 150 x 24 = 3600 x 1.025= 3690	
B: 3500 x 1.03 = 3713.15	
3713.15 - 3690 = {23.15	
0215	
Answer £ 23.13	
Turn over for the next question	
	100
	2.5% interest is added to the total amount saved. Investment B Invest £3500 Compound interest is added at 3% per year. After 2 years, how much more is investment B worth than investment A? A : $150 \times 24 = 3600 \times 1.025 = 3690$ B : $3500 \times 1.03 = 3713.15$ Answer £ 23.15

0 5

Do r

1	a = (-10)	0=(2)	C= (7)

11 (a) Work out a+b+c

VOIK GUT	атрт	1		1.1		111	[2 marks]
(6)	+	(-1)	+ 1	(-4)	1,1	-1	
1-10/		2/		(7)		()	
1 .07	-	-					

Answer (1)

11 (b) Show that a + 2c is parallel to b

[2 marks]

a+2c

$$2c = 2*\begin{pmatrix} -4 \\ 7 \end{pmatrix} = \begin{pmatrix} -8 \\ 14 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 10 \end{pmatrix} + \begin{pmatrix} -8 \\ 14 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

4+2c and b are mallioles : parallel

18 N/Aun 18/9300/3H

The cost of a ticket increases by 10% to £19.25 - 110 ×100 (17.50 = 100% 17.50 The *n*th term of a sequence is 12n-5Work out the numbers in the sequence that have two digits and are not prime. ^ [3 marks] 1=7 2=19 3 = 31 4 = 43 and 91 SS Answer

Turn over ▶

IB/MJun 18/8300/3H

B

12

pressure = force area

A force of 40 Newtons is applied to an area of 3.2 square metres.

Work out the pressure.

Give the units of your answer.

LC = 3.2 = 12.5 \(\) \(

1 0

	Method A
	For the first two digits use an odd number between 30 and 100
	For the last two digits use a multiple of 11
	Method B
	Use four digits in the order even odd even odd Do not use the digit zero
	Do tor rea me nifit sero
	thod gives the greater number of possible codes?
You must	show your working. [3 marks
Melho	y A: 30 → 100 35 odd swiblio
	11 -> 90 9 possibility
	35 +9 = 315
Mall	
Meth	
	4 3 4 3
425	4 3 4 3
425	xuxs = 400
425	xuxs = 400
4×5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Do not write cotside the box Amy has x beads. Billy has three more beads than Amy. Carly has four times as many beads as Billy. Circle the expression for the number of beads that Carly has. [1 mark] 4(x+3)x+12 4x + 33x + 4Two straight lines intersect at point A. 16 Not drawn accurately Circle the coordinates of A. [1 mark] $(-\frac{4}{3}, 3)$ (-4, 3) (-12, 3) 3 = -4x $9c = -\frac{3}{4}$

1 2

/B/M/Jun 18/6300/3H

20	All dimensions are in centimetres.	outside t box
And the second s	Not drawn accurately	
	Use Pythagores' theorem to work out the exact value of $\frac{x}{y}$ [3 marks]	
	$\frac{100y^2 = x^2 + 49x^2}{100y^2 = x^2 + 49x^2}$	
	$\frac{100 \text{ y}^2}{50} = \frac{50 \times^2}{50} = \frac{100}{50} = \frac{2}{\text{y}^2}$	
	$=\frac{1}{4}$ $\frac{1}{2}$ $\frac{2}{7^2}$	
	Answer J2	
52	$\frac{1}{2} = \frac{\sqrt{x^2}}{\sqrt{7^2}}$	
12) = = = = = = = = = = = = =	

18	Show that, for $x \neq 0$ $\frac{x+4}{3x} - \frac{5}{2x}$					cutside the box
	can be written in the form $\frac{ax+}{cx}$		and c are integers.		[3 marks]	
	2(x+4) 10 6x 6x					
	20x +8 15		2x -2 6x			
	Answer	20c 60	-7			
19	The equation of a straight line is Circle the point where the line or				[1 mark]	
	(0, 8)	(12, 0)	(0, 12)	(8, 0)		
						7

IB/W/Jun 18/6300/2H 1 3

IBMULITIE/SSUUG

1	A, B and C are points on a circle. DCB is a streight line. PAQ is a tangent to the circle.	outside the box
	D C Not drawn accurately	
	Sam is trying to work out the size of angle m . Here is his working. angle $ACB = 56^{\circ}$ angles in the same segment are equal $m = 180^{\circ} - 56^{\circ}$ angles at a point on a straight line add up to 180° $m = 124^{\circ}$	
	Make a criticism of his working. [1 mark Fincurred First theorem shaked Should be "Alternat Segment theory"	

			Do not write outside the
21	The mass of an ornament is m grams.		box
	The height of the ornament is h centimetres.		
	m is directly proportional to the cube of h .		
	m = 1600 when $h = 8$		
21 (a)	Work out an equation connecting m and h.	1	
	3	[3 marks]	
	mah K= 3125		
	$m = K h^3$		
	1600 = K 83 m= 3.125 h3		
	1600 = K		
	83 4		
	Answer M = 3.125 h ³		
	110101		
	W. L. Th.		
21 (b)	Work out the mass of an ornament of height 12 centimetres.	[2 marks]	
	$M = 3.125 h^2$		
	. 3		
	M= 3.125 + 12		
	F		
	Answer 5 4 00 grams		
	Turn over for the next question		
1	rain over for the next question		
1	rum over for the next question		
	full of the next question		
	full of the next question		
	full of the next question		
	full of the next question		

н

1 5

lum over »

18/M/Jun 18/6300/3

The speed-time graph shows 20 seconds of a car journey.

Harry wants to estimate the distance the car travels in this time.

He uses a triangle and a trapezium, as shown, to estimate the area under the graph.

Car journey

Car journey

Time (s)

24 (a) Complete Harry's method to estimate the distance the car travels.

A = ½ (10 x 20) = 1000

15 ½ (20 + 30) x 10 = 250

100 x 250 = 350

Answer 350 m

A sequence of numbers is formed by the itera $u_{n+1} = \frac{3}{u_n + 1},$	STATE OF STA
Work out the values of u_2 and u_3 $v_2 = \frac{3}{4+1} = 0.6$	[2 marks]
$\frac{0}{0.6} = \frac{3}{0.6 \times 1} = 0.6$	
<i>u</i> ₂ =O	.6
u ₃ =	373
Turn over for the ne	d question

IB/M/Jun18/8300/3H

25	ABCDEF is a triangular prism which represents part of a hill. ABCF is the horizontal rectangular base. D is vertically above C.	outside the box
	A 400 m B T) A	
25 (a)	Work out the height CD. $O = S2.SS21$ [2 marks]	-
	Answer <u>52.6</u> m	
		7

24 (b)		sy, which of these is true for Harry's method?	Do not we outside if box
	Tick one box.	[1 mark]	
		It works out an overestimate of the distance	
		It works out an underestimate of the distance	
		It could work out an overestimate or an underestimate of the distance	
		Turn over for the next question	
			4

Do not virite outside the box 26 The histogram shows information about the speed of cars as they pass a checkpoint. The scale on the frequency density axis is missing. Speed of cars Frequency density 25 30 35 40 45 50 Speed (mph) The histogram shows information about 480 cars. 26 (a) How many cars does the first bar represent? [4 marks] Count small square 480 = 600 = 0.8 A = 15 + 25: 375 +0.8 = 300) B = (7 x 23)-10 = 165 x0.8 = 132 C= (+25)-15=60 x0.8= 48 300

2 2

2 1

10 are red	10 are red and 20 are blue.						
One o	One disc is taken out at random and replaced by two of the other colour.						
Anoth	Another disc is then taken out at random and replaced by two of the other colour.						
Anoth	Another disc is then taken out at random.						
Work out the	Work out the probability that all three discs taken out are red.						
0	2		[3 marks]				
K	13	10					
10	20	30					
	+2						
a	22	q					
			7(100-4				
	24 +2	8_					
8	24 12	32					
			9				
	10	9 18	$\hat{2} = \frac{3}{124}$				
Photos Control	30	7 71 3	, lesp				
		2					
	Answer	124					
	/IIIawo/	924					

	Use the histogram to estimate the number of cars that are over the speed limit. [2 marks]					
	40 little Squars over 40 mph					
	40 ×0.8 = 32					
	Answer 32	-				
	Turn over for the next question					
	*	-				

2 3

Co not write outside the box

P is a point on the circle with equation $x^2 + y^2 = 80$ P has x-coordinate 4 and is below the x-axis.

Not drawn accurately

Work out the equation of the tangent to the circle at P. $\frac{x^2 + y^2 = 80}{x^2 + y^2 = 80} = \frac{80}{4} = \frac{80}{4} = \frac{80}{4} = \frac{80}{4} = \frac{100}{4} = \frac$

