

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2018 Publications Code 4MB1_01_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
 - o cao correct answer only
 - o ft follow through
 - o isw ignore subsequent working
 - o SC special case
 - o oe or equivalent (and appropriate)
 - o dep dependent
 - o indep independent
 - o awrt answer which rounds to
 - eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded

Question	Working	Answer	Notes	Mark	Sub- Total	Total
1		3, 8, 13	-1 for every error or omission	B2		2
2			180 + 54	M1		2
		234°		A1		
3	$\frac{(75-69)}{75}$ ×100		M1 for $\frac{\pm (75-69)}{75}$	M1		2
			or $\frac{\pm (75-69)}{69}$			
		8		A1		
4		A(-3,8)	B1 for each coordinate	B2		2
			SC B1B0 for $(1, -2)$			
			SC B1B0 for $(8, -3)$			
5(a)		Ι		B1	1	2
5(b)		I N		B1	1	
6		2π $4\sqrt{2}$	-1 for each error or omission	B2		2

Working	Answer	Notes	Mark	Sub-	Total
$2\frac{1}{4} = \frac{9}{4}$			B1	10181	3
$\frac{4}{3} \times \frac{9}{4} = \frac{3}{4}$		Correctly multiplying $\frac{1}{3}$	M1		
		and their " $\frac{9}{4}$ "			
$\frac{7}{8} - \frac{3}{4}$	$\frac{1}{8}$		A1dep		
			M1		3
$x = \frac{\left(7.1 \times 10^7\right) - \left(5.2 \times 10^5\right)}{16}$		M1 for correct order of operations to make <i>x</i> the subject	M1		
x = 4405000	4.405×10^{6}	Accept 4.41×10 ⁶	A1		
		M2 for 4.41×10^{n} or			
		$4.405 \times 10^{n} \text{ or } 4.4 \times 10^{6}$			
	$2\frac{1}{4} = \frac{9}{4}$ $\frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$ $\frac{7}{8} - \frac{3}{4}$ $16x = (7.1 \times 10^7) - (5.2 \times 10^5)$ $x = \frac{(7.1 \times 10^7) - (5.2 \times 10^5)}{16}$	$2\frac{1}{4} = \frac{9}{4}$ $\frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$ $\frac{7}{8} - \frac{3}{4}$ $\frac{1}{8}$ $16x = (7.1 \times 10^7) - (5.2 \times 10^5)$ $x = \frac{(7.1 \times 10^7) - (5.2 \times 10^5)}{16}$	$2\frac{1}{4} = \frac{9}{4}$ $\frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$ Correctly multiplying $\frac{1}{3}$ and their " $\frac{9}{4}$ " $\frac{7}{8} - \frac{3}{4}$ $\frac{1}{8}$ $16x = (7.1 \times 10^7) - (5.2 \times 10^5)$ $x = \frac{(7.1 \times 10^7) - (5.2 \times 10^5)}{16}$ M1 for correct order of operations to make <i>x</i> the subject $x = 4405000$ 4.405 \times 10^6 Accept 4.41 \times 10^6 M2 for 4.41 \times 10^7 or	$2\frac{1}{4} = \frac{9}{4}$ $\frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$ $\frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$ $\frac{1}{8}$ Correctly multiplying $\frac{1}{3}$ and their " $\frac{9}{4}$ " $\frac{7}{8} - \frac{3}{4}$ $\frac{1}{8}$	$2\frac{1}{4} = \frac{9}{4}$ B1 $\frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$ Correctly multiplying $\frac{1}{3}$ B1 $\frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$ $\frac{1}{8}$ Correctly multiplying $\frac{1}{3}$ B1 $\frac{7}{8} - \frac{3}{4}$ $\frac{1}{8}$ A1 dep $16x = (7.1 \times 10^7) - (5.2 \times 10^5)$ M1M1 $x = \frac{(7.1 \times 10^7) - (5.2 \times 10^5)}{16}$ M1 for correct order of operations to make <i>x</i> the subjectM1 $x = 4405000$ 4.405×10^6 Accept 4.41×10^6 A1

Question	Working	Answer	Notes	Mark	Sub-	Total
9	$\sqrt{80} = \left(\sqrt{16 \times 5} = \right) 4\sqrt{5}$ $\sqrt{180} = \sqrt{36 \times 5} = 6\sqrt{5}$		M1 for one term simplified correctly	M1	Total	3
	$\sqrt{180} = \sqrt{36 \times 5} = 6\sqrt{5}$		M2 for both terms simplified correctly (with one step of working for	M1		
			$\sqrt{180}$)			
	$3\sqrt{180} - 2\sqrt{80} = 3(6\sqrt{5}) - 2(4\sqrt{5})$	$10\sqrt{5}$		A1		
10	$\det = 4(2x) - 1(5x)$			B1		3
	$det = 4(2x) - 1(5x)$ $8x - 5x = 9 \Longrightarrow x = \dots$		Sets their determinant = 9 and attempts to solve	M1		
		<i>x</i> = 3		A1		
11	$\frac{3(x+2)-4(2x-1)}{(2x-1)(x+2)}$		M1 for correct first stage	M1		3
	$\frac{3x+6-8x+4}{(2x-1)(x+2)}$		M1 for correct expansion of numerator in single fraction (allow one sign slip	M1dep		
		$\frac{5(2-x)}{(2x-1)(x+2)}$	Final answer - allow 10-5x in numerator or $2x^2+3x-2$ in the denominator	A1		

Question	Working	Answer	Notes	Mark	Sub-	Total
					Total	
12(a)		64		B1	1	3
12(b)	$\frac{180 - 64''}{2} - 32$		M1 for	M1	2	
	2 32		$\angle ACB = 32, \angle OCB = 38$			
		26		A1		
13	$(16n^2 + 24n + 9)$ $(16n^2 - 24n + 9)$		Either bracket expanded	M1		3
	$(16n^{2} + 24n + 9) - (16n^{2} - 24n + 9)$ $= 48n$		correctly			
	=48n			A1		
		12(4n) so is a	Or equivalent e.g.	A1		
		12(4n) 50 15 d	$\frac{48n}{12} = 4n$			
		multiple of 12	$\frac{12}{12} - 4n$			
14	$(\mathbf{p} -) \sqrt{(2x-1)^2 + (-2)^2}$		Attempt at modulus (or	M1		3
	$(\mathbf{a} -)\sqrt{(2x-1)} + (-3)$		square) of a			
	$(\mathbf{a} =)\sqrt{(2x-1)^2 + (-3)^2}$ $(2x-1)^2 + 9 = 25 \Longrightarrow x =$		Getting to pre-factorising	M1		
	$(2x-1) + 9 = 25 \Longrightarrow x = \dots$		stage or at least one			
			solution for <i>x</i>			
		$x = \frac{5}{2}$ or $-\frac{3}{2}$		A1		
15	AB = AD - triangle is <u>isosceles</u>		M1 for each	M1		3
	BC = CD - <u>tangents</u> to a <u>circle</u> from an external			M1		
	point are equal in length (either circle or length)					
	$AC = AC - \underline{\text{common side}}$	Congruent from	A1 for all three + SSS	A1		
		SSS				

Question	Working	Answer	Notes	Mark	Sub-	Total
16(a)		$16x^{10}$	D1 for either 16 or for x^{10}	B2	Total 2	4
16(a) 16(b)		81y ¹²	B1 for either 16 or for x^{10} B1 for either 81 or for y^{12}	B2 B2	2	4
17(a)	LB = 295.5 and 209.5		One correct lower bound	M1	2	4
	2(295.5) + 2(209.5)	1010		A1		
17(b)	UB = 296.5 and 210.5		One correct upper bound	M1	2	
	$296.5 \times 210.5 = 62413.25$	62413		A1		
18	$297 = k \left(\frac{1}{3}\right)^{-3}$		SC B1 for 297 = $\frac{k}{\sqrt[3]{\frac{1}{3}}}$	M1		4
	$k = 11$ $x^{2} = \left(\sqrt[3]{\frac{111}{704}}\right)^{2}$		Or equivalent	M1 M1dep		
		$\left(x^2\right) = \frac{1}{16}$	Or equivalent	A1		

Question	Working	Answer	Notes	Mark	Sub- Total	Total
19	5(2x+y)-x(2x+y)		Correct first step for factorising numerator	M1	10141	4
	(2x-y)(2x+y)		One term correctly factorised	M1		
	$\frac{(2x-y)(2x+y)}{(2x-y)(2x+y)}$		Both terms correct	M1		
		$\frac{5-x}{2x-y}$ or	Final answer	A1		
		$\frac{x-5}{y-2x}$				
20		Heights at (10), 8, 4, 3.5 and 10 Widths at (0 - 2), 2 - 5, 5 - 8, 8 - 12, 12 - 15	B1 for each correct bar (widths and heights). For full marks scale on freq. density axis required. SC if no marks then B1 for correct scale	B4		4

Question	Working	Answer	Notes	Mark	Sub- Total	Total
21	Area of sector $= \frac{35}{360} \times \pi \times 8^2$		Correct method for sector area	M1		4
	Area of triangle = $\frac{1}{2}(8)(8)\sin 35^\circ$		Correct method for triangle area	M1		
	Area of segment = 19.54 – 18.35		Area of sector – area of triangle (dependent on previous M marks)	M1		
		1.19	Correct answer	A1		
22	$\left(\frac{972}{4500}\right)^{\frac{1}{3}}$ (length scale factor) oe		M1 for $\frac{972}{4500}$	M2		4
	$\left\{ \left(\frac{972}{4500}\right)^{\frac{1}{3}} \right\}^2$		Squaring their $\left(\frac{972}{4500}\right)^{\frac{1}{3}}$ - dependent on first M mark	M1 DEP		
		540	dependent on first withark	A1		

Question	Working	Answer	Notes	Mark	Sub- Total	Total
23	$\frac{11}{18} \times \frac{10}{17} \times \frac{9}{16}$ and $\frac{7}{18} \times \frac{6}{17} \times \frac{5}{16}$		M1 for one correct term	M2	Total	4
	$18 \frac{17}{18} \times \frac{10}{17} \times \frac{9}{16} - \frac{7}{18} \times \frac{6}{17} \times \frac{5}{16}$		Attempt at correct	M1		
	18 17 16 18 17 16		calculation (or equivalent)	DEP		
		$\frac{77}{102}$	Or equivalent	A1		
	OR $\frac{11}{18} \times \frac{10}{17} \times \frac{7}{16}$ and $\frac{11}{18} \times \frac{7}{17} \times \frac{6}{16}$		M1 for one correct term	M2		
	$3\left(\frac{11}{18} \times \frac{10}{17} \times \frac{7}{16}\right) + 3\left(\frac{11}{18} \times \frac{7}{17} \times \frac{6}{16}\right)$		Attempt at correct calculation (or equivalent)	M1 DEP		
	(18 17 16) (18 17 16)					
		$\frac{77}{102}$		A1		

Question	Working	Answer	Notes	Mark	Sub- Total	Total
24(a)	Area of circle $=\pi \left(\frac{k}{2}\right)^2$		Correct expression for the area of the circle	M1	3	5
	Area of square $=\frac{1}{2}k^2$ or Area of quarter-square $=\frac{1}{8}k^2$		Correct expression for area of square or quarter-square	M1		
	$A = \frac{1}{4}\pi k^2 - \frac{1}{2}k^2 + \frac{1}{8}k^2$		$8A = 2\pi k^2 - 3k^2$ - note that answer given so sufficient working must be shown	A1		
24(b)	$8A = k^2 \left(2\pi - 3\right)$		Correct factorisation	M1	2	
	$k^2 = \frac{8A}{2\pi - 3}$	$k = \sqrt{\frac{8A}{2\pi - 3}}$		A1		
25(a)			Two terms correct for M1	M1	3	5
	$v = 3t^2 - 12t + 15$	(a) = 6t - 12		A1 A1		
25(b)	6t - 12 = 0	$v_{\rm min} = 3$	Sets their <i>a</i> equal to zero	M1 A1	2	

Question	Working	Answer	Notes	Mark	Sub- Total	Total
26(a)	y = -2x + 8		Complete re-arrangement	M1	2	6
			to make y the subject			
		-2		A1		
26(b)	<i>A</i> (0,8)			B1	4	
	B(4,0)			B 1		
	B(4,0) Area $=\frac{1}{2}(4)(8)$		Follow through final two marks for $A(0, 8)$ and B(0,4)	M1		
		16		A1		
27	$(3x+1)^{2} = (x+3)^{2} + (2x)^{2} - 2(x+3)(2x)\cos(120^{\circ})$ 9x ² + 6x + 1 = x ² + 6x + 9 + 4x ² + 2x ² + 6x			M1		6
	$9x^{2} + 6x + 1 = x^{2} + 6x + 9 + 4x^{2} + 2x^{2} + 6x$		Expand brackets (condone at most one error)	M1		
	$x^2 - 3x - 4 = 0$		Simplifying to TQ	M1		
	$x^{2} - 3x - 4 = 0$ (x+1)(x-4) = 0		Solving trinomial quadratic marking rules	M1		
	$\frac{\sin\theta}{x+3} = \frac{\sin 120^{\circ}}{3x+1}$		Sine rule with their value for x substituted or in terms of x – independent of previous M marks	M1		
		27.8		A1		

Question	Working	Answer	Notes	Mark	Sub- Total	Total
28(a)	$4x - 8 < 1 + x \Longrightarrow 3x < 9$		Expanding and re-arranging to <i>ax</i> < <i>b</i> with either <i>a</i> or <i>b</i> correct	M1	2	7
		<i>x</i> < 3		A1		
28(b)	$2x^2 - 7x - 9 \le 0 \Longrightarrow (2x - 9)(x + 1) \le 0$		Rewriting and solving trinomial quadratic marking rules	M1	4	
	$x = \frac{9}{2}$ or -1			A1		
			Chooses inside region for their critical values	M1		
		$-1 \le x \le \frac{9}{2}$		A1		
28(c)		$-1 \le x < 3$	Follow through their values but must be correct inequalities and dependent on all previous M marks	B1ft	1	