Oxford Cambridge and RSA

GCE

Physics B

Unit H157/02: Physics in depth
Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
\cdots	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
ค	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\checkmark	Correct response
AE	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Underds which are not essential to gain credit
ecf	Alternative wording carried forward
AW	Or reverse argument
ORA	a method mark, awarded if a correct method is used
(1)m	an evaluation mark, awarded for correct substitution and evaluation
(1)e	

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: 4(a)(ii) \& 6(b) Ticks must NOT be used in 6(c) or 8(c).

Question	Answer	Marks	Guidance
Section A			
1 (a)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=667$ (lines mm^{-1}) award 2 marks $\begin{aligned} & \text { no. }=1.00 \times 10^{-3} \mathrm{~m} / 1.50 \times 10^{-6} \mathrm{~m}=666.6 \ldots \checkmark \\ & =667\left(\text { lines } \mathrm{mm}^{-1}\right) \checkmark \end{aligned}$	2	must be 3 s.f. for the second mark If number per metre calculated and then correctly rounded to 6.67×10^{5}, give 1 mark
(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=51.0 / 51 / 51.02\left({ }^{\circ}\right)$ award 2 marks $\begin{aligned} & 2 \lambda=d \sin \theta_{2} \Rightarrow 2 \times 583 \times 10^{-9} \mathrm{~m}=\left[1.50 \times 10^{-6} \mathrm{~m}\right] \sin \theta_{2} \checkmark \mathrm{~m} \\ & \theta_{2}=\arcsin \left\{\left[2 \times 583 \times 10^{-9} \mathrm{~m}\right] /\left[1.50 \times 10^{-6} \mathrm{~m}\right]\right\}=51^{\circ} \checkmark \mathrm{e} \end{aligned}$	2	
(c)	$3 \lambda / d=\left[3 \times 583 \times 10^{-9} \mathrm{~m}\right] /\left[1.50 \times 10^{-6} \mathrm{~m}\right] \checkmark=1.166 \text { and so } \theta_{3}$ is impossible/there's no value of sine > $1 \checkmark$	2	or $n_{\text {max }}$ for $\theta_{\mathrm{n}}=90^{\circ} \rightarrow 2.6 \checkmark$ and $2.6<3 \checkmark$ or maximum possible path difference $=1.50 \times 10^{-6} \mathrm{~m} \checkmark$ and $3 \lambda=3 \times 583 \times 10^{-9} \mathrm{~m}=1.75 \times 10^{-6} \mathrm{~m}$ which is greater \checkmark
	Total	6	
2 (a)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=1.05 \times 10^{-5} / 1.1 \times 10^{-5}(\mathrm{~V})$ award 3 marks $\begin{aligned} & R=\rho L / A=\left[2.3 \times 10^{-8} \Omega \mathrm{~m}\right] \times\left[3.2 \times 10^{-3} \mathrm{~m}\right] /\left\{\pi \times\left[10 \times 10^{-6} \mathrm{~m}\right]^{2}\right\} \\ & =\left[7.36 \times 10^{-11} \Omega \mathrm{~m}^{2}\right] /\left[3.14 \times 10^{-10} \mathrm{~m}^{2}\right] \checkmark \mathrm{s}=0.234 \Omega \checkmark \mathrm{e} \\ & V_{1}=I R=4.5 \times 10^{-5} \mathrm{~A} \times 0.234 \Omega=1.05 \times 10^{-5} / 1.1 \times 10^{-5} \mathrm{~V} \checkmark \end{aligned}$	3	m.ps. $1 \& 2$ are $\checkmark \mathrm{m}$ method of finding R and $\checkmark \mathrm{e}$ its evaluation. Allow intermediate rounding e.g. 0.23Ω gives $1.0(35) \times 10^{-5}$ Ecf own R / rounding error
(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=0.026 / 0.0265(\mathrm{~V})$ award 2 marks $\begin{aligned} & V_{2}=I / G=4.5 \times 10^{-5} \mathrm{~A} / 1.7 \times 10^{-3} \mathrm{~S} \\ & =0.026(5) \mathrm{V} / 26(.5) \mathrm{mV} \end{aligned}$	2	or $\mathrm{R}=1 / \mathrm{G}=588 / 590 \Omega \quad$ followed by $\mathrm{V}_{2}=I R \checkmark$ Needs at least 2 sig figs. NOT 0.027. If $G=1.7 \mathrm{~S}$, do not give mp1 allow e.c.f. for incorrect G / R or I, but not if both incorrect
	Total	5	
3 (a)	$\longrightarrow \longrightarrow$	2	Same length and direction \checkmark Resultant = sum of lengths, horizontal \checkmark No ecf
(b)	$(=0)$	1	Same length, head-to-tail closed loop
(c)	equal angles between the phasor components \checkmark correct answer (up down up, maybe rotated)	2	
	Total	5	

Question	Answer	Marks	Guidance
$4 \quad$ (a) (i)	(X is a) dislocation \checkmark	1	
(a) (ii)	Any two points from: Shearing stress/stress applied perpendicular to dislocation \checkmark individual atoms slip OR atoms move one at a time \checkmark smaller force/less energy needed to deform metal \checkmark dislocation moves \checkmark whole layer of atoms moves \checkmark	2	Any of these may be obtained from clear additions to the figure.
(b)	Any two points from: Foreign atom different in size from the native atoms may occupy the gap in the dislocation \checkmark 'pins' dislocation by preventing slip/ preventing movement /sliding of layers	2	
	Total	5	
5 (a)	FIRST CHECK THE CANDIDATE'S CALCULATED ANSWER If answer $=3.9 \times 10^{17} / 3.94 \times 10^{17} \quad\left(s^{-1}\right)$ award 3 marks $\begin{aligned} & f=c / \lambda=\left[3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right] /\left[520 \times 10^{-9} \mathrm{~m}\right]=5.77 \times 10^{14} \mathrm{~Hz} \\ & E=h f=6.6 \times 10^{-34} \mathrm{~J} \times 5.77 \times 10^{14} \mathrm{~Hz}=3.81 \times 10^{-19} \mathrm{~J} \checkmark \\ & \text { no. of photons } / \mathrm{s}=\left[150 \times 10^{-3} \mathrm{~W}\right] /\left[3.81 \times 10^{-19} \mathrm{~J}\right] \\ & =3.94 \times 10^{17} \mathrm{~s}^{-1} \end{aligned}$	3	Allow intermediate rounding to 2 s.f. so if answer is close but not as shown left, check the candidate's calculation $\left(E=3.8 \times 10^{-19} \mathrm{~J}\right.$ gives $3.95 \times 10^{17} \mathrm{~s}^{-1}$, $f=5.8 \times 10^{14} \mathrm{~Hz}$ gives $E=3.83 \times 10^{-19} \mathrm{~J}$ gives $3.92 \times 10^{17} \mathrm{~s}^{-1}$) Or $E=h c / \lambda \checkmark$ Evaluation of $E \checkmark$
(b)	FIRST CHECK THE CANDIDATE'S CALCULATED ANSWER If answer $=1.27 / 1.3 \times 10^{-27}\left(\mathrm{~km} \mathrm{~m} \mathrm{~s}^{-1}\right)$ award 1 mark $p=h / \lambda=\left[6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right] /\left[520 \times 10^{-9} \mathrm{~m}\right]=1.27 / 1.3 \times 10^{-27} \mathrm{~N} \mathrm{~s}$	1	
(c)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=4.95 / 5.0 \times 10^{-10} \mathrm{~N}$ award 1 mark $F=$ no. of photons $/ \mathrm{s} \times$ momentum of 1 photon $=3.94 \times 10^{17} \mathrm{~s}^{-1} \times 1.27 \times 10^{-27} \mathrm{Ns}=5.0 \times 10^{-10} \mathrm{~N} \checkmark$	1	e.c.f. own answer to (b) and allow use of 'show that' value(s) from (a) $4 \times 10^{17} \mathrm{~s}^{-1} \times 1.3 \times 10^{-27} \mathrm{~N} \mathrm{~s}=5.2 \times 10^{-10} \mathrm{~N}$ or $4 \times 10^{17} \mathrm{~s}^{-1} \times 1 \times 10^{-27} \mathrm{Ns}=4 \times 10^{-10} \mathrm{~N}$
	Total	5	
	Section A total	26	

Question	Answer	Marks	Guidance
Section B			
6 (a) (i)	choice of equation: $s=u t+1 / 2 a t^{2} \& u=v \sin \theta$ and substitution for $s=0 \checkmark$ rearrangement to $t=\frac{2 v \sin \theta}{g}$	2	mp 1 is for equation choice and setting boundary condition e.g. $s=0, v=-u, g$ and u have opposite signs alternative approaches possible, e.g. finding max height from v^{2} $=u^{2}+2$ as where $u=v \sin \theta(1)$; then $v=u+a t \Rightarrow 0=v \sin \theta-g t$ (1) ; and doubling to get total time (1)
(a) (ii)	$\begin{aligned} & t=\frac{2 v \sin \theta}{g}=2 \times 24 \mathrm{~m} \mathrm{~s}^{-1} \sin \left(76^{\circ}\right) /\left(9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)=4.75 \mathrm{~s} \checkmark \\ & R=v \cos \theta t=24 \mathrm{~m} \mathrm{~s}^{-1} \cos \left(76^{\circ}\right) \times 4.75 \mathrm{~s}=27.6 \mathrm{~m} \checkmark \\ & \text { plotted correctly from own tabulated value and } \\ & \text { maximum }>58 \mathrm{~m} \&<62 \mathrm{~m} \text { read } \checkmark \end{aligned}$	3	If there's no working but 27.6 is entered the in table, award both $m p 1 \& m p 2$ mp3 needs the line to have been drawn: no line = no mark
(b)	Choose from the suggested differences and explanations in the guidance. Allow other reasonable responses. 'Difference' may be illustrated by sketch on the graph. For 3 marks, at least one must be an explanation of the difference stated. Annotate this question with ticks and crosses, so there will be three annotations in the question.	3	NB shape of curve is not the projectile trajectory Pairs of difference \& explanation: all values of R less for any given values of $\theta \checkmark$ because air resistance opposes horizontal motion \checkmark $R-\theta$ will become asymmetrical \checkmark because air resistance changes with time as the projectile moves \checkmark reduction in R greater for larger $\theta \checkmark$ because projectile in the air for longer \checkmark Mean horizontal velocity will be less \checkmark Because air resistance acts on the horizontal component of velocity,

Question	Answer	Marks	Guidance
$7 \quad$ (a) (i)	$\left(2^{8}\right.$ levels/shades of grey and) $2^{8}=256 \checkmark$ 0 to 255 is 256 (different values)	2	or $\log _{2} 256=2$ NOT $\log _{2} 255$ as need to demonstrate knowledge that there are 256 levels mp 2 needs to be explicit; mention of ' 256 ' by itself is not enough (8 bits is in question).
(a) (ii)	White/random/dark specks due to noise \checkmark Some/many 'dots'/pixels are very different from surrounding ones (and unlikely to be realistic representations of surface) \checkmark	2	Mp1 = identify tiny dots as pixels (possibly implied) Mp 2 = imply they are well off any reasonable value.
(b)	$25 \mathrm{~km} \approx 20$ pixels so resolution $=25 \mathrm{~km} / 20=1250 / 1300 \mathrm{~m} \checkmark$	2	Allow range 15-25 pixels. accept answer in range 1000 - 1700 km from above No ecf from mp1
(c)	Advantage: suggestion \checkmark explanation \checkmark Disadvantage: suggestion \checkmark explanation \checkmark	4	e.g. clearer/better quality/easy to interpret \checkmark no distracting speckles/more like the actual surface of Mercury \checkmark e.g. loss of detail/contrast \checkmark genuine bright/dim areas smoothed out (at edges) \checkmark need to process data \checkmark need more computer time/power \checkmark
(d)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 48 (s), award 3 marks If answer = 47.8 (s), award 2 marks quantity of data $=22 \times 31944 \times 8=5622144$ bits \checkmark time $=$ no. of bits/bit rate $=5622144 /\left[117.6 \times 10^{3} \mathrm{~s}^{-1}\right] \checkmark \mathrm{m} \& \mathrm{~s}$ $=47.8 \mathrm{~s}=48 \mathrm{~s} \vee \mathrm{e}$	3	e.c.f mp1, e.g. 22×31944 gives 6 s would give mp 2 \& $\mathrm{mp} 3=2$ marks while 5.98 s would not get $\mathrm{mp} 3=1$ mark.
	Total	13	
	Section B total	27	

Question	Answer	Mark s	Guidance
Section C			
8 (a) (i)	percentage uncertainty in width $=[0.1 / 10] \times 100 \%=1 \%$ and percentage uncertainty in $t<[4 \mu \mathrm{~s} / 0.1 \mathrm{~s}] \times 100 \%(=0.004$ $\%$) which is (very, very) much smaller \checkmark	2	Calculation of one percentage uncertainty = mp1; calculation of the other and comparison $=\mathrm{mp} 2$. Calculation can be implied by correct values 1% \&/or 0.004%
(a) (ii)	$\left.\begin{array}{l} \text { mean }=[0.10 \mathrm{~m}] /[0.1453 \mathrm{~s}]=0.6882 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \\ \text { uncertainty } \Delta v=1 \% \text { of own value of mean } \\ \quad=0.006882 / 6.882 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{array}\right\} \begin{aligned} & \text { rounded } \Delta v \text { to } 1 \text { s.f. and rounded } v \text { to same no of d.p., } \\ & =[0.688 \pm 0.007] \mathrm{m} \mathrm{~s}^{-1} \checkmark \end{aligned}$	3	$\begin{aligned} & \text { or e.g. } 688.2 \underline{\mathrm{~mm} \mathrm{~s}^{-1}} \text { or } 68.8 \mathrm{~cm} \mathrm{~s}^{-1} \\ & \text { or: } \Delta v=v_{\max }-0.6882 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \\ & =[0.101 \mathrm{~m}] /[0.1453 \mathrm{~s}]-0.6882 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \\ & =0.6951 \mathrm{~m} \mathrm{~s}^{-1}-0.6882 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}=0.0069 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Allow $[0.69 \pm 0.01] \mathrm{m} \mathrm{s}^{-1}$
(b) (i)	(t is a scalar but) \boldsymbol{v} and \boldsymbol{p} are vectors and so can go in + or direction.	1	not just 'are vectors' without linking to the movement in Fig. 8.1 e.g. '(Time is scalar but) velocity and momentum are vectors so can go in a negative direction' is a minimum for the mark
(b) (ii)	$\begin{aligned} & \Delta p_{1}=0.649 \mathrm{Ns}+[-0.761 \mathrm{Ns}]=-0.112 \mathrm{Ns} \\ & \Delta p_{2}=[-0.486] \mathrm{N} s+0.377 \mathrm{Ns}=-0.109 \mathrm{~N} s \mathrm{v} \end{aligned}$ The difference ($=0.003 \mathrm{~N} \mathrm{~s}$) is negligible (about 3\% of either value) \checkmark because percentage uncertainty of 1% for each of 4 readings ($\Rightarrow 4 \%$) is more than this \checkmark	3	e.c.f own momenta providing values are not very different from each other
(b) (iii)	E_{k} before: $\begin{aligned} & 1 / 2 \times 0.800 \mathrm{~kg} \times\left[0.811 \mathrm{~m} \mathrm{~s}^{-1}\right]^{2}+1 / 2 \times 0.800 \mathrm{~kg} \times\left[-0.951 \mathrm{~m} \mathrm{~s}^{-1}\right]^{2} \\ & =0.6249 \mathrm{~J}=0.625 \mathrm{~J} \checkmark \end{aligned}$ E_{k} after: $\left.1 / 2 \times 0.800 \mathrm{~kg} \times\left[-0.608 \mathrm{~m} \mathrm{~s}^{-1}\right]^{2}+1 / 2 \times 0.800 \mathrm{~kg} \times 0.471 \mathrm{~m} \mathrm{~s}^{-1}\right]^{2}$ $=0.2366 \mathrm{~J}=0.237 \mathrm{~J}$ which (significantly) less than the initial kinetic energy so energy has been transferred to e.g. increased internal energy of trolleys \checkmark	2	Allow intermediate rounding to 2 s.f. in (b)(iii) m.p. 2 needs a repeat calculation and a reasoned comment that this is significantly less than the original kinetic energy.

Question	Answer	Marks	Guidance
8 (c)*	(Level 3) (5-6 marks) Comments on improvement obtained by more results in terms of better means and quantified uncertainty with consequences for analysis of momenta and energies. Suggests a reasonable and detailed method of producing similar initial velocity and suggests a plausible way to measure v with greater precision. There is a line of reasoning presented with some structure. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. (Level 2) (3-4 marks) Comments on improvement obtained by more results in terms of better means and quantified uncertainty. Suggests a reasonable method, possibly incomplete, of producing similar initial velocity. Comments on accuracy of velocity measurements. There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. (Level 1) (1-2 marks) Suggests simple method of producing similar velocities without any physical justification. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. (0 marks) No response or no response worthy of credit.	[6]	Indicative scientific points may include: Repeatable set-up - catapult - weight/pulley with release - ramp - pull over marked distance with newton-meter at fixed setting Advantages of repeated similar velocities - allows calculation of mean and uncertainty in v - can calculate uncertainty in p, E_{k} - can quantify energy losses in the impact - can check on 'lost' p i.e. other unallowed-for forces Improving timing method - not a priority as current method is not the weakest link - cut card with greater precision - measure length with better resolution (e.g. travelling microscope) - longer card to reduce percentage error - ensure card cuts light-gate beam at right angles (e.g. by observing and discarding results where it doesn't) Other suggestions - use of linear air track - use of motion sensors (NOT tickertape) - can investigate p, E_{k} losses in trolley running along surface without collision to allow for these Use the L1, L2, L3 annotations in RM Assessor ; do not use ticks.
	Section C Total	17	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

