GCSE (9-1) Physics A (Gateway Science) J249/04 Paper 4 (Higher tier) Sample Question Paper

Date - Morning/Afternoon

Time allowed: 1 hour 45 minutes

You must have:

- the Data Sheet

You may use:

- a scientific or graphical calculator
- a ruler

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION

- The total mark for this paper is 90 .
- The marks for each question are shown in brackets [].
- Quality of extended responses will be assessed in questions marked with an asterisk (*).
- This document consists of 28 pages.

SECTION A

Answer all the questions.

You should spend a maximum of 30 minutes on this section.

1 A radio transfers 30 J of potential energy to 27 J of useful energy. What is the efficiency and energy loss for the radio?

	efficiency	energy loss
A	10%	3 J
B	10%	27 J
C	90%	3 J
D	90%	27 J

Your answer \square

2 A boy kicks a football.

The football has a mass of 400 g .
What is the potential energy of the football when it is 0.8 m above the ground?
Use the constant: gravitational field strength $(\mathrm{g})=10 \mathrm{~N} / \mathrm{kg}$.

A 0.032 J
B $\quad 3.2 \mathrm{~J}$
C 320 J
D 3200 J

Your answer \square

3 The National Grid transfers energy efficiently using high voltages.
Why are high voltages more efficient?
A High voltages produce a high current which heats wires less.
B High voltages produce a low current which heats wires more.
C High voltages produce a high current which heats wires more.
D High voltages produce a low current which heats wires less.

Your answer \square

4 Which statement describes nuclear fusion?
A Two hydrogen nuclei join to form a helium nucleus.
B A helium nucleus joins with a hydrogen nucleus to form an alpha particle.
C Uranium nuclei split and produce high energy neutrons causing a chain reaction.
D Two helium nuclei join to form a hydrogen nucleus.

Your answer \square

5 Which row correctly describes the domestic electricity supply in the UK?

a.c. or d.c.	frequency (Hz)	voltage (V)
A	a.c.	50
B	a.c.	230
C	d.c.	50
D	d.c.	230

Your answer \square

6 What is a typical weight of an empty single decker school bus?
A $\quad 1200 \mathrm{~N}$
B $\quad 12000 \mathrm{~N}$
C $\quad 120000 \mathrm{~N}$
D $\quad 1200000 \mathrm{~N}$

Your answer

7 How was the Sun formed?
A From dust and gas pushed together by gravity leading to a fission reaction.
B From dust and gas pulled together by gravity leading to a fusion reaction.
C From dust and gas pushed together by gravity leading to a fusion reaction.
D From dust and gas pulled together by gravity leading to a fission reaction.

Your answer \square

8 An element has more than one isotope.
Which correctly describes the atoms of all isotopes of this element?

	Numbers of electrons	Numbers of protons	Numbers of neutrons
A	different	different	different
B	same	different	different
C	same	same	different
D	same	different	same

Your answer \square

9 The most abundant form of radium is radium-226.
Its nuclear mass is 226 and its nucleus contains 138 neutrons.
Which is an isotope of radium?
A nuclear mass 226; 137 neutrons
B nuclear mass 226; 139 neutrons
C nuclear mass 227; 138 neutrons
D nuclear mass 227; 139 neutrons

Your answer \square

10 A sound wave travels from water into air.
Its wavelength in air is longer than in water.
How do the frequency and speed of the wave in air compare with their values in water?

	Frequency in air	Speed in air
A	higher	faster
B	higher	same
C	same	faster
D	same	same

11 Red light refracts when it enters glass from air because its speed changes.

The red light is replaced by blue light.
Which statement is correct about the refraction of blue light?
A It refracts less than red because its speed in glass is greater than red.
B It refracts less than red because its speed in glass is less than red.
C It refracts more than red because its speed in glass is greater than red.
D It refracts more than red because its speed in glass is less than red.

Your answer \square

12 Which row increases the efficiency of a machine?

	increase energy losses due to friction	increase the work output without changing the work input
A	Yes	yes
B	Yes	no
C	No	no
D	No	yes

Your answer \square

13 A hockey player used pads on her legs to reduce injuries when hit by the ball. How do the pads affect the ball?

A The acceleration and force of the ball is reduced.
B The acceleration of the ball is increased and the force is decreased.
C The acceleration of the ball is decreased and the force is increased.
D The acceleration and force of the ball is increased.
Your answer \square

14 Radium-226, ${ }_{88}^{226} \mathrm{Ra}$, decays to become radon-222, ${ }_{86}^{222} \mathrm{Rn}$.
What is emitted when a nucleus of radium-226 decays?
A a beta particle
B an alpha particle
C four neutrons
D four protons

Your answer \square

15 A radioactive source has a half-life of 80 s .
How long will it take for $7 / 8$ of the source to decay?
A 10 s
B $\quad 70 \mathrm{~s}$
C $\quad 240 \mathrm{~s}$
D 640 s

Your answer \square

Section B

Answer all the questions.

16 A crowd makes a Mexican wave.
A Mexican wave starts with people lifting and lowering their arms.

The Mexican wave continues by people, next to them, lifting and lowering their arms.
(a) Why is a Mexican wave an example of a transverse wave?
\qquad
\qquad
(b) In the classroom a teacher demonstrates waves using a rope.

Look at the diagram of the wave.

(i) The frequency of the wave is 2 Hz .

What does this statement mean?
\qquad
\qquad
(ii) How many seconds will it take this wave to travel 12 m ?

Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad answer: \qquad seconds
(c) Ultrasound scans are used to produce images of tissues inside the body.

Ultrasound waves are emitted.
They reflect from layers of tissue inside the body.
Explain how the reflections are used to produce an image of the tissues.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Ultrasound and X rays are used to scan patients in hospitals.

Complete the table to show a medical use, benefits and risk of using these waves to scan patients.

Wave	Medical use	Example of a benefit	Risk
X-rays	Shows up hard tissues inside the body.	Takes images of broken bones.	Damages living cells by causing \qquad \qquad \qquad
ultrasound			None

17 A car on a roller coaster is stationary at the top of a slope.
It has a weight of 6500 N and a potential energy of 217000 J .
(a) Calculate how high above the ground it is.
\qquad
\qquad
answer: \qquad m
(b)

The energy at the bottom of the slope is lower than expected.
Suggest two ways to improve the efficiency of the roller coaster car.
\qquad
\qquad
\qquad
\qquad

The information below shows information on radioactive isotopes.

Radioactive isotope	Type of radiation	Half-life	Penetration through human flesh
A	alpha	300 years	2 mm
B	beta	7 hours	60 mm
C	gamma	7 hours	$>10 \mathrm{~m}$
D	alpha	9 seconds	2 mm
E	gamma	3 years	$>10 \mathrm{~m}$

(a) A doctor injects a patient with isotope \mathbf{C} to track blood flow through the body. Use the data to suggest why the doctor uses isotope \mathbf{C}
\qquad
\qquad
(b) A doctor implants radioactive isotope \mathbf{A} into a patient to treat a localised cancer which is a few mm in size.

She intends to remove the isotope in a few weeks.
Use the data to suggest two reasons why the doctor uses isotope \mathbf{A}.
\qquad
\qquad
(c) A doctor wants to irradiate a tumour using gamma rays.

Why does the activity of the source need to be checked before it is used on a patient?
\qquad
\qquad

19* Scientists collect evidence from the universe and develop theories to explain their observations.
Here are three absorption spectra showing red shift. The white arrows show the relative position of the same band in the absorption spectra of a star, a nearby galaxy and a distant galaxy.

Using your knowledge of red shift, describe how the information in the diagrams supports the idea of the Big Bang model.
\qquad

Kate investigates how well different balls bounce.
She drops different balls from the same height and measures the height the balls bounce.
She repeats the experiment 3 times for each ball.

100 cm drop
Her results are shown in the table.

Ball	Drop height $(\mathbf{c m})$	$\mathbf{1}^{\text {st }}$ reading bounce height (cm)	$\mathbf{2}^{\text {nd }}$ reading bounce height (cm)	$\mathbf{3}^{\text {rd }}$ reading bounce height (cm)	Mean bounce height (cm)
blue	100	61	62	60	61
green	100	60	31	59	50
white	100	84	86	85	85
yellow	100	26	24		26

(a) Kate forgot to record one of the results for the yellow ball.

Suggest the value of the missing result.
\qquad
\qquad
answer: cm
(b) Josh does an experiment with bouncing balls.

He does his experiment with a drop height of $\mathbf{2 0 0} \mathbf{~ c m}$.
One ball bounces 100 cm .
Josh says that this ball is a better bouncer than any of Kate's.
Use the data and ideas about efficiency to explain why Josh is incorrect.
\qquad
\qquad
\qquad
(c) Josh uses a new ball. He says this ball is an amazing bouncer.

He says if you drop it from $\mathbf{2 0 0} \mathrm{cm}$ it will bounce to a height of $\mathbf{2 5 0} \mathrm{cm}$.
Explain why this is not possible.
\qquad
\qquad
\qquad

21 Alex has two radiators in her home. They are filled with 10 kg of different liquids.
The radiators have different power ratings.

(a) The heaters are turned on and the temperature of each rises by $40^{\circ} \mathrm{C}$ in 1680 seconds.

Use the data to show that the heaters take the same time to heat up.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Alex has two fires in her home, \mathbf{X} and \mathbf{Y} shown in the diagrams below.

Why does Fire \mathbf{Y} helps save money on the energy bills for her home?
Use calculations of efficiency in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

22 (a) State two features of a satellite in a polar orbit?
Suggest a use for a satellite in a polar orbit.
\qquad
\qquad
\qquad
(b) An artificial satellite (\mathbf{X}) is kept in a stable circular orbit around a planet by a centripetal force caused by gravity.

(i) Explain how the velocity of a satellite is constantly changing whilst its speed remains the same when it is in orbit.
\qquad
\qquad
(ii) The satellite is remotely controlled from Earth.

The scientists want the satellite to move slower.
What effect will this change in speed have on the height of its orbit?
Explain your answer.
\qquad
\qquad

23 The diagram below shows the structure of a transformer.

(a) Explain why there is more alternating current in the secondary coil than in the first.
\qquad
\qquad
\qquad
\qquad
(b) The secondary coil produces an output of 12 V .

Calculate the number of turns needed on the secondary coil.
Show your working.
\qquad
\qquad
\qquad
(c) Voltage is increased before transmission through the National Grid. It is increased from 25000 V up to 400000 V . This increases the voltage 16 times.
(i) How much would this increase in voltage affect the current?
\qquad
\qquad
(ii) Use the formula: power $=$ current $^{2} \mathbf{x}$ resistance
to explain why this voltage increase is important to power loss in transmission cables.
\qquad
\qquad

24 Matt experiments with radioactive materials.
He investigates how the activity of radiation changes with distance.
The radiation moves from the source to the detector.
He measures the counts per minute from a radioactive source.

The table shows the results from the experiment.

Distance between the source and the detector (cm)	Count rate (counts per minute)
10	1024
20	256
40	64
80	16

(a) Describe using the data in the table how the count rate changes as the detector is moved away from the source.
\qquad
(b) Matt does two further readings at 160 cm and 320 cm .

His results are in the table below.

Distance between the source and the detector (cm)	Count rate (counts per minute)
10	1024
20	256
40	64
80	16
$\mathbf{1 6 0}$	$\mathbf{6}$
$\mathbf{3 2 0}$	$\mathbf{0}$

As the distance is increased to 160 cm and 320 cm the results do not follow the same pattern as the other results.

What do you think these results should have been?
Explain the anomalies in the last two results.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Gamma radiation is used to irradiate cancers in the brain.

Treatment is given for 15 minutes every 4 days.
Each patient receives a certain dose of radiation.

Explain how this treatment reduces damage to healthy cells.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

25 The table shows the stopping distances for a car.

Speed of car (m/s)	Thinking distance (m)	Braking distance (\mathbf{m})	Total stopping distance (m)
4	3	1.5	4.5
8	6	6	12
16	12	24	36
32	24		

(a) Use the data given to fill in the information missing at a speed of $32 \mathrm{~m} / \mathrm{s}$.
(b) The car takes 6 m to brake when moving at $8 \mathrm{~m} / \mathrm{s}$.

Look at the graph of the car as it starts to brake and then stopping.

time (s)
Use the graph to show that the braking distance is 6 m .
\qquad
\qquad
(c) The formula to work out kinetic energy is:

$$
\text { kinetic energy }=0.5 x \text { mass } x\left(\text { velocity }^{2}\right)
$$

A car has 30000 J of energy and a mass of 1 tonne (1 tonne $=1000 \mathrm{~kg}$).
Calculate the velocity of the car and show your working.
\qquad
\qquad
\qquad
answer: m / s
(d) Cars and lorries have different brakes.

Brakes absorb the energy of the vehicle before it comes to rest.
The brakes on lorries have larger brake discs and brake pads than cars.
Brakes are designed for increased air flow.
Explain why this is more important for lorries than cars.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTION PAPER

BLANK PAGE

Copyright Information:

© sofist. Image supplied by iStock, www.istockphoto.com
© Mark Kostich. Image supplied by iStock, www.istockphoto.com
OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Oxford Cambridge and RSA
...day June 20XX - Morning/Afternoon
GCSE (9-1) Physics A (Gateway Science)
J249/04 Paper 4 (Higher Tier)

SAMPLE MARK SCHEME

MAXIMUM MARK
90

This document consists of 16 pages

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: scoris assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
3. Log-in to scoris and mark the required number of practice responses ("scripts") and the required number of standardisation responses. YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.
5. Work crossed out:
a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- if there is nothing written at all in the answer space
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- \quad OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question).
8. The scoris comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.
If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, using the Level descriptors to help you decide whether it is a strong or weak answer. The indicative scientific content in the Guidance column indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance.

Using a 'best-fit' approach based on the skills and science content evidenced within the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Once the level is located, award the higher or lower mark:

The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.
The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:

The skills and science content determines the level.
The communication statement determines the mark within a level.
11. Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	

12. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

SECTION A

Question	Answer	Marks	AO element	Guidance
1	C	1	2.1	
2	B	1	2.1	
3	D	1	1.2	
4	A	1	1.1	
5	A	1	1.1	
6	C	1	2.1	
7	B	1	1.1	
8	C	1	1.1	
9	D	1	2.1	
10	C	1	1.1	
11	D	1	1.1	
12	D	1	1.2	
13	A	1	2.1	
14	C	1	2.1	
15		1	2.1	

SECTION B

Question			Answer	Marks	AO element	Guidance
16	(a)		Arms move at 90° to wave direction / AW (1)	1	2.1	E.g. arms move at right angles to the wave (1)
-	(b)	(i)	2 waves pass the same point (1) each second (1)	2	2×1.1	
		(ii)	```Use of velocity = frequency x wavelength / 2 < 2 (1) 4 m/s (1) 12/4 = 3 s (1)```	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW use of speed = distance/time to calculate final answer
	(c)		Any one from: Reflections return at different times / AW speed of ultrasound is known / AW (1) AND Times indicate depth (of tissue boundaries) / AW (1) Depth can be calculated by speed x time (1)	3	1.1 2×2.1	
	(d)		$\begin{aligned} & 1^{\text {st }} \text { column: shows up soft tissues / AW (1) } \\ & 2^{\text {nd }} \text { column: pregnancy scans / AW (1) } \\ & 3^{\text {rd }} \text { column: mutations / damage to DNA (1) } \end{aligned}$	3	$\begin{aligned} & 1.1 \\ & 2.2 \\ & 1.1 \end{aligned}$	ALLOW other uses of scans e.g. scanning tissues other than bones (1) ALLOW cancer (1)

Question		Answer	Marks	AO element	Guidance
17	(a)	Re-arrange and substitute into $W D=F \times D$: $\begin{aligned} & 217000 / 6500(1) \\ & 33.4(\mathrm{~m})(1) \end{aligned}$	2	2×2.1	
	(b)	Reduce the friction between the car and track/lubrication (1) Make the shape of the car more streamlined to reduce drag (1)	2	$2 \times 3.3 \mathrm{~b}$	
18	(a)	Any one from: Gamma can get out of body / least amount of time to do damage to the body / reasonable half-life (1)	1	3.1b	
	(b)	Any two from: Alpha has short range (1) Highest ionising power (1) Longer half-life than D (1)	2	2×3.16	
	(c)	To check the activity / intensity / strength of the isotope (1) Idea that the activity will be continually falling so needs to be monitored (1)	2	2×2.2	

Question		Answer	Marks	AO element	Guidance
20	(a)	28 (1)	1	3.1a	
	(b)	(Josh's is only) 50\% efficient / AW (1) And any one from: (Kate's) red is 76% efficient (1) Blue is 61% efficient (1) White is 85% efficient (1)	2	$2 \times 3.1 b$	
	(c)	Idea there is fixed energy in system/can't be (more than) 100\% efficient (1) Idea that extra energy is heeded for this to happen (1)	2	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	
21	(a)	Energy for oil is $672000(\mathrm{~J})(1)$ Energy for water is $1680000(\mathrm{~J})(1)$ Recall $P=E / t$ (1) Calculation to show: $672000 / 400=1680 \text { AND } 1680000 / 1000=1680(1)$	4	2.2 2.2 1.1 2.1	
	(b)	Half of the (previously) wasted power or energy / 0.5 kW is being used to heat water (1) Less energy needed from other sources to heat water (1) Fire X is ($4 / 5 \times 100 \%=) 80 \%$ efficient (1) Fire Y is $(4.5 / 5 \times 100 \%=) 90 \%$ efficient (1)	4	$\begin{aligned} & \hline 2.2 \\ & 2.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	ALLOW some energy from fire now used to heat water scores (1)

Question			Answer	Marks	AO element	Guidance
22	(a)		Any two features from: Polar orbit travels over both poles (1) Travels faster than a geostationary satellite (1) Multiple orbits in a day (1) Lower orbit than geostationary satellites(1) Any one use from: Mapping/weather/surveillance (1)	3	3×1.1	
	(b)	(i)	Velocity is speed in a given / known direction / straight line (1) Direction continuously changing (1)	2	2×1.1	ALLOW higher level answers e.g. changing velocity denotes acceleration (1) Always accelerating to the centre (1)
		(ii)	Higher orbit (1) Less (force of) gravity / acceleration (1)	2	2×1.1	

Question			Answer	Marks	AO element	Guidance
23	(a)		Fewer coils in the secondary coil (1) Means it induces less potential difference in secondary coil (1) More current induced as power in constant (1)	3	3×1.1	
	(b)		$\begin{aligned} & \frac{230}{27600}=\frac{12}{X} \\ & \text { OR } \frac{230 \times 12}{27600} / \text { AW (1) } \\ & 1440 \text { (turns) (1) } \end{aligned}$	2	1.2 2.1	
	(c)	(i)	Simple use of $\mathrm{P}=\mathrm{V} \times \mathrm{I} /$ idea of ratios using transformer equations (1) Current reduced by 16 times (1)	2	$\begin{aligned} & 1.2 \\ & 2.1 \end{aligned}$	ALLOW current reduced (1)
		(ii)	Very large decrease in power loss (1) Power loss is related to the square of the current / AW (1)	2	$\begin{gathered} \hline 3.1 \mathrm{~b} \\ 2.1 \end{gathered}$	

Question		Answer				Marks		Guidance
25	(a)					2	$\begin{gathered} 1.2 \\ 3.1 \mathrm{~b} \end{gathered}$	
		(32)	24	96 (1)	120 (1)			
	(b)	Correct reference or attempt to use area under sloping part of graph (1)$\begin{equation*} \frac{8 \times 1.5}{2}=6 \tag{1} \end{equation*}$				2	2×1.2	ALLOW full marks for correct calculation as this implies correct use of area under sloping part of graph.
	(c)	KE formula re-arranged and numbers substituted correctly /$\begin{aligned} & \sqrt{ } 30000 /(0.5 \times 1000)(1) \\ & 7.75(\mathrm{~m} / \mathrm{s})(1) \end{aligned}$				2	2×2.1	
	(d)	Lorry has more KE than a car at the same velocity (1) More absorption of energy by larger brake discs (1) Higher rate of dissipation of energy to surrounding air (1) Brakes less likely to overheat (1)				4	4×2.1	

