

MATHEMATICS

0626/04 October/November 2017

Paper 4 MARK SCHEME Maximum Mark: 84

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is regulated for use in England as a Cambridge International Level 1/Level 2 (9–1) Certificate.

This document consists of **6** printed pages.

Cambridge Assessment

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1(a)	4	2	M1 for $\frac{11-3}{2-0}$ oe soi
1(b)	[y =]4x + 3 oe	1	FT from <i>their</i> gradient
2	35, 70, 75	4	M1 for sum of angles in a triangle = 180 soi or for 3 angles that fit two of the conditions M1 for $2x$ and $x + 40$ oe M1 for $x + 2x + x + 40 = 180$ soi
3	Correct angle bisector with correct arcs shown	2	B1 for angle bisector or correct arcs
4(a)	7	1	
4(b)	3, 7, 31 (with no extras)	2	B1 for two correct (with no extras) or for answer $[n =] 2, 3, 5$ only or M1 for 3, 7, 15, 31 seen
4(c)	Valid reason	1	e.g. Because 63 is divisible by 3 or 7 or 9 or 21 e.g. because 63 has more than 2 factors
5(a)	$\frac{2}{5}, \frac{4}{7}, \frac{3}{7}, \frac{4}{7}, \frac{3}{7}$ correctly placed	2	B1 for $\frac{2}{5}$ or $\frac{3}{7}$ on a 'does not stop' branch
5(b)	$\frac{6}{35}$ oe	2	M1 for their $\frac{2}{5} \times$ their $\frac{3}{7}$
6(a)	(x+3)(x-6)	2	M1 for $x(x-6) + 3(x-6)$ or $x(x+3) - 6(x+3)$ or for $(x+a)(x+b)$ where $a + b = -3$ or $ab = -18$
6(b)	x = -3, x = 6	1	FT <i>their</i> factors
7	60	4	M1 for time for A to $B = 125 \div 50$ soi M1 for time for B to $C = 4 - their 2.5$ M1 for 90 \div their 1.5
8	$x^2 + 7x - 4x - 28$	M1	Must have at least 3 terms correct or $x^2 + 3x - 28$, must have at least 2 terms correct
	$3x^2 - 3x$	B1	
	$x^{2} + 7x - 4x - 28 + 3x^{2} - 3x$ = 4x ² - 28 = 4(x ² - 7)	A1	

Question	Answer	Marks	Partial Marks
9(a)(i)	18	1	
9(a)(ii)	14	2	B1 for 26 or 12 or M1 for attempt at difference of quartiles
9(b)	15	3	B2 for answer 85
			OR
			M1 for $[t < 30] = 102$ or $[t > 30] = 18$ seen M1 for $\frac{120 - their \ 102}{120}$ soi
10(a)	$3k^7$	1	
10(b)	$\frac{5}{2}$ oe	2	M1 for $\frac{2}{5}$ seen or $\left(\frac{25}{4}\right)^{\frac{1}{2}}$
10(c)	$\frac{1}{3}$	1	
11	12x ³	4	M1 for $2x \times 2x \times 2x$
			M1 for $\frac{1}{3} \times 2x \times 2x \times (5x - 2x)$
			M1 for <i>their</i> $8x^3 - their 4x^3$
12	270	3	B2 for $\left(\frac{9}{6}\right)^3$ or $\left(\frac{6}{9}\right)^3$ oe soi
			or B1 for $\frac{9}{6}$ or $\frac{6}{9}$ oe soi
13	$\frac{26}{33}$	3	M2 for $x = \frac{78}{99}$
			or M1 for $x = 0.78$ and $100x = 78.78$ soi
14(a)	5	1	
14(b)	36 700	1	
14(c)	6	1	
15(a)	$\begin{pmatrix} 12 & 9 \\ 18 & 21 \end{pmatrix}$	1	
15(b)	10	1	
15(c)	$\frac{1}{10} \begin{pmatrix} 7 & -3 \\ -6 & 4 \end{pmatrix} \text{ oe}$	1	FT from <i>their</i> determinant.

Question	Answer	Marks	Partial Marks
16	$(-1\frac{1}{2}, 1\frac{1}{2}), (2, 5)$	5	M1 for $2x^2 - 3 = x + 3$ M1 for $2x^2 - x - 6 = 0$ M1 for $(2x + 3)(x - 2) = 0$ A1 FT from <i>their</i> factorised quadratic, for $x = -1\frac{1}{2}$ or 2 After A0, SC1 for <i>their</i> x co-ordinates being +3 more than <i>their</i> y co-ordinates
17(a)	Total of flour in grams is $250x + 375y$	M1	
	$250x + 375 \leqslant 6000$ $\rightarrow 2x + 3y \leqslant 48$	A1	
17(b)	$x + y \leq 20 \text{ oe}$ $y \ge 3 \text{ oe}$	2	B1 for each or SC1 for $x + y * 20$ and $y*3$ where * can be an equals or any inequality sign.
17(c)	Correct region clearly identified	4	B3 for three correct boundaries 2x + 3y = 48, $x + y = 20$, $y = 3or B2 for two correct boundariesor B1 for one correct boundary$
17(d)	116	2	M1 for $x = 12$ and $y = 8$ identified or for $5x + 7y$ for integer (x, y) in their region
18	g = 3 h = -5	4	B3 for one correct OR M1 for $2x^3 - 2gx^2 + x^2 - gx - 15x + 15g$ or $(x - g)(2x - 5)(x + 3)$ M1 for $2x^3 + hx^2 - 18x - 9h$ or $(x - 3)(x + 3)(2x + h)$
19(a)	2 q – 2 p oe	3	M1 for $\overrightarrow{DA} = -2\mathbf{p}$ or $\overrightarrow{AX} = 2\mathbf{q}$ or $\overrightarrow{BX} = -\mathbf{q}$ M1 for $\overrightarrow{DX} = \overrightarrow{DA} + \overrightarrow{AX}$ oe soi
19(b)	$\overrightarrow{DY} = 3\mathbf{q} - 3\mathbf{p} [= 3(\mathbf{q} - \mathbf{p})]$ or $\overrightarrow{XY} = \mathbf{q} - \mathbf{p}$	M1	
	which is a multiple of \overrightarrow{DX} and X is on DX and on DY oe	A1	

0626/04

Question	Answer	Marks	Partial Marks
20	243 and 297	3	B2 for one correct or M1 for $180 + 63$ or $360 - 63$ oe or M1 for sketch of sine curve for $0^{\circ} \le x \le 360^{\circ}$ seen
21	$\frac{2}{\sqrt{27}} = \frac{2}{3\sqrt{3}}$	M1	$\frac{2\sqrt{3} + \sqrt{27}}{\sqrt{27} \times \sqrt{3}}$
	$\frac{5}{3\sqrt{3}}$	M1	$\frac{2\sqrt{3} + \sqrt{27}}{\sqrt{81}}$ or numerator $2\sqrt{3} + \sqrt{27}$ or better
	$\frac{5}{3\sqrt{3}} = \frac{5 \times \sqrt{3}}{3\sqrt{3} \times \sqrt{3}}$	M1	$\frac{2\sqrt{3}+3\sqrt{3}}{9}$
	$\frac{5\sqrt{3}}{9}$	A1	$\frac{5\sqrt{3}}{9}$